From c600c82e8f4fd4fd3ea595228064d59500e13ea5 Mon Sep 17 00:00:00 2001 From: catangent Date: Sun, 22 Dec 2024 21:04:38 +0000 Subject: [PATCH] chunk meshes uhh something something --- build.zig.zon | 2 +- src/rendering/chunk_mesh.zig | 6 +- src/rendering/chunk_models.c | 6648 ---------------------------------- 3 files changed, 4 insertions(+), 6652 deletions(-) delete mode 100644 src/rendering/chunk_models.c diff --git a/build.zig.zon b/build.zig.zon index 7b93093..75c0d80 100644 --- a/build.zig.zon +++ b/build.zig.zon @@ -4,7 +4,7 @@ .version = "0.0.0", .dependencies = .{ - .znoise = .{ .path = "zig-gamedev/libs/znoise" }, + .znoise = .{ .path = "znoise" }, .raylib = .{ .path = "raylib" }, }, diff --git a/src/rendering/chunk_mesh.zig b/src/rendering/chunk_mesh.zig index d0ae2f7..1650a2a 100644 --- a/src/rendering/chunk_mesh.zig +++ b/src/rendering/chunk_mesh.zig @@ -62,10 +62,10 @@ pub fn UploadChunkMesh(mesh: ChunkMesh, dynamic: bool) void { } raylib.rlDisableVertexArray(); } -pub fn UpdateMeshBuffer(mesh: ChunkMesh, index: i32, data: ?*const anyopaque, dataSize: i32, offset: i32) void { +pub fn UpdateChunkMeshBuffer(mesh: ChunkMesh, index: i32, data: ?*const anyopaque, dataSize: i32, offset: i32) void { raylib.rlUpdateVertexBuffer(mesh.vboId[index], data, dataSize, offset); } -pub export fn UnloadMesh(mesh: ChunkMesh) void { +pub fn UnloadChunkMesh(mesh: ChunkMesh) void { raylib.rlUnloadVertexArray(mesh.vaoId); if (mesh.vboId != null) { for (0..MAX_VBOS) |i| { @@ -79,7 +79,7 @@ pub export fn UnloadMesh(mesh: ChunkMesh) void { raylib.MemFree(mesh.texcoords2); raylib.MemFree(mesh.normals); } -pub fn DrawMesh(mesh: ChunkMesh, material: raylib.Material, transform: raylib.Matrix) void { +pub fn DrawChunkMesh(mesh: ChunkMesh, material: raylib.Material, transform: raylib.Matrix) void { raylib.rlEnableShader(material.shader.id); if (material.shader.locs[raylib.SHADER_LOC_COLOR_DIFFUSE] != -1) { const values: [4]f32 = [4]f32{ diff --git a/src/rendering/chunk_models.c b/src/rendering/chunk_models.c deleted file mode 100644 index 5fb5124..0000000 --- a/src/rendering/chunk_models.c +++ /dev/null @@ -1,6648 +0,0 @@ -/********************************************************************************************** -* -* rmodels - Basic functions to draw 3d shapes and load and draw 3d models -* -* CONFIGURATION: -* #define SUPPORT_MODULE_RMODELS -* rmodels module is included in the build -* -* #define SUPPORT_FILEFORMAT_OBJ -* #define SUPPORT_FILEFORMAT_MTL -* #define SUPPORT_FILEFORMAT_IQM -* #define SUPPORT_FILEFORMAT_GLTF -* #define SUPPORT_FILEFORMAT_VOX -* #define SUPPORT_FILEFORMAT_M3D -* Selected desired fileformats to be supported for model data loading. -* -* #define SUPPORT_MESH_GENERATION -* Support procedural mesh generation functions, uses external par_shapes.h library -* NOTE: Some generated meshes DO NOT include generated texture coordinates -* -* -* LICENSE: zlib/libpng -* -* Copyright (c) 2013-2024 Ramon Santamaria (@raysan5) -* -* This software is provided "as-is", without any express or implied warranty. In no event -* will the authors be held liable for any damages arising from the use of this software. -* -* Permission is granted to anyone to use this software for any purpose, including commercial -* applications, and to alter it and redistribute it freely, subject to the following restrictions: -* -* 1. The origin of this software must not be misrepresented; you must not claim that you -* wrote the original software. If you use this software in a product, an acknowledgment -* in the product documentation would be appreciated but is not required. -* -* 2. Altered source versions must be plainly marked as such, and must not be misrepresented -* as being the original software. -* -* 3. This notice may not be removed or altered from any source distribution. -* -**********************************************************************************************/ - -#include "raylib.h" // Declares module functions - -// Check if config flags have been externally provided on compilation line -#if !defined(EXTERNAL_CONFIG_FLAGS) - #include "config.h" // Defines module configuration flags -#endif - -#if defined(SUPPORT_MODULE_RMODELS) - -#include "utils.h" // Required for: TRACELOG(), LoadFileData(), LoadFileText(), SaveFileText() -#include "rlgl.h" // OpenGL abstraction layer to OpenGL 1.1, 2.1, 3.3+ or ES2 -#include "raymath.h" // Required for: Vector3, Quaternion and Matrix functionality - -#include // Required for: sprintf() -#include // Required for: malloc(), calloc(), free() -#include // Required for: memcmp(), strlen(), strncpy() -#include // Required for: sinf(), cosf(), sqrtf(), fabsf() - -#if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL) - #define TINYOBJ_MALLOC RL_MALLOC - #define TINYOBJ_CALLOC RL_CALLOC - #define TINYOBJ_REALLOC RL_REALLOC - #define TINYOBJ_FREE RL_FREE - - #define TINYOBJ_LOADER_C_IMPLEMENTATION - #include "external/tinyobj_loader_c.h" // OBJ/MTL file formats loading -#endif - -#if defined(SUPPORT_FILEFORMAT_GLTF) - #define CGLTF_MALLOC RL_MALLOC - #define CGLTF_FREE RL_FREE - - #define CGLTF_IMPLEMENTATION - #include "external/cgltf.h" // glTF file format loading -#endif - -#if defined(SUPPORT_FILEFORMAT_VOX) - #define VOX_MALLOC RL_MALLOC - #define VOX_CALLOC RL_CALLOC - #define VOX_REALLOC RL_REALLOC - #define VOX_FREE RL_FREE - - #define VOX_LOADER_IMPLEMENTATION - #include "external/vox_loader.h" // VOX file format loading (MagikaVoxel) -#endif - -#if defined(SUPPORT_FILEFORMAT_M3D) - #define M3D_MALLOC RL_MALLOC - #define M3D_REALLOC RL_REALLOC - #define M3D_FREE RL_FREE - - #define M3D_IMPLEMENTATION - #include "external/m3d.h" // Model3D file format loading -#endif - -#if defined(SUPPORT_MESH_GENERATION) - #define PAR_MALLOC(T, N) ((T*)RL_MALLOC(N*sizeof(T))) - #define PAR_CALLOC(T, N) ((T*)RL_CALLOC(N*sizeof(T), 1)) - #define PAR_REALLOC(T, BUF, N) ((T*)RL_REALLOC(BUF, sizeof(T)*(N))) - #define PAR_FREE RL_FREE - - #if defined(_MSC_VER) // Disable some MSVC warning - #pragma warning(push) - #pragma warning(disable : 4244) - #pragma warning(disable : 4305) - #endif - - #define PAR_SHAPES_IMPLEMENTATION - #include "external/par_shapes.h" // Shapes 3d parametric generation - - #if defined(_MSC_VER) - #pragma warning(pop) // Disable MSVC warning suppression - #endif -#endif - -#if defined(_WIN32) - #include // Required for: _chdir() [Used in LoadOBJ()] - #define CHDIR _chdir -#else - #include // Required for: chdir() (POSIX) [Used in LoadOBJ()] - #define CHDIR chdir -#endif - -//---------------------------------------------------------------------------------- -// Defines and Macros -//---------------------------------------------------------------------------------- -#ifndef MAX_MATERIAL_MAPS - #define MAX_MATERIAL_MAPS 12 // Maximum number of maps supported -#endif -#ifndef MAX_MESH_VERTEX_BUFFERS - #define MAX_MESH_VERTEX_BUFFERS 7 // Maximum vertex buffers (VBO) per mesh -#endif - -//---------------------------------------------------------------------------------- -// Types and Structures Definition -//---------------------------------------------------------------------------------- -// ... - -//---------------------------------------------------------------------------------- -// Global Variables Definition -//---------------------------------------------------------------------------------- -// ... - -//---------------------------------------------------------------------------------- -// Module specific Functions Declaration -//---------------------------------------------------------------------------------- -#if defined(SUPPORT_FILEFORMAT_OBJ) -static Model LoadOBJ(const char *fileName); // Load OBJ mesh data -#endif -#if defined(SUPPORT_FILEFORMAT_IQM) -static Model LoadIQM(const char *fileName); // Load IQM mesh data -static ModelAnimation *LoadModelAnimationsIQM(const char *fileName, int *animCount); // Load IQM animation data -#endif -#if defined(SUPPORT_FILEFORMAT_GLTF) -static Model LoadGLTF(const char *fileName); // Load GLTF mesh data -static ModelAnimation *LoadModelAnimationsGLTF(const char *fileName, int *animCount); // Load GLTF animation data -#endif -#if defined(SUPPORT_FILEFORMAT_VOX) -static Model LoadVOX(const char *filename); // Load VOX mesh data -#endif -#if defined(SUPPORT_FILEFORMAT_M3D) -static Model LoadM3D(const char *filename); // Load M3D mesh data -static ModelAnimation *LoadModelAnimationsM3D(const char *fileName, int *animCount); // Load M3D animation data -#endif -#if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL) -static void ProcessMaterialsOBJ(Material *rayMaterials, tinyobj_material_t *materials, int materialCount); // Process obj materials -#endif - -//---------------------------------------------------------------------------------- -// Module Functions Definition -//---------------------------------------------------------------------------------- - -// Draw a line in 3D world space -void DrawLine3D(Vector3 startPos, Vector3 endPos, Color color) -{ - rlBegin(RL_LINES); - rlColor4ub(color.r, color.g, color.b, color.a); - rlVertex3f(startPos.x, startPos.y, startPos.z); - rlVertex3f(endPos.x, endPos.y, endPos.z); - rlEnd(); -} - -// Draw a point in 3D space, actually a small line -void DrawPoint3D(Vector3 position, Color color) -{ - rlPushMatrix(); - rlTranslatef(position.x, position.y, position.z); - rlBegin(RL_LINES); - rlColor4ub(color.r, color.g, color.b, color.a); - rlVertex3f(0.0f, 0.0f, 0.0f); - rlVertex3f(0.0f, 0.0f, 0.1f); - rlEnd(); - rlPopMatrix(); -} - -// Draw a circle in 3D world space -void DrawCircle3D(Vector3 center, float radius, Vector3 rotationAxis, float rotationAngle, Color color) -{ - rlPushMatrix(); - rlTranslatef(center.x, center.y, center.z); - rlRotatef(rotationAngle, rotationAxis.x, rotationAxis.y, rotationAxis.z); - - rlBegin(RL_LINES); - for (int i = 0; i < 360; i += 10) - { - rlColor4ub(color.r, color.g, color.b, color.a); - - rlVertex3f(sinf(DEG2RAD*i)*radius, cosf(DEG2RAD*i)*radius, 0.0f); - rlVertex3f(sinf(DEG2RAD*(i + 10))*radius, cosf(DEG2RAD*(i + 10))*radius, 0.0f); - } - rlEnd(); - rlPopMatrix(); -} - -// Draw a color-filled triangle (vertex in counter-clockwise order!) -void DrawTriangle3D(Vector3 v1, Vector3 v2, Vector3 v3, Color color) -{ - rlBegin(RL_TRIANGLES); - rlColor4ub(color.r, color.g, color.b, color.a); - rlVertex3f(v1.x, v1.y, v1.z); - rlVertex3f(v2.x, v2.y, v2.z); - rlVertex3f(v3.x, v3.y, v3.z); - rlEnd(); -} - -// Draw a triangle strip defined by points -void DrawTriangleStrip3D(const Vector3 *points, int pointCount, Color color) -{ - if (pointCount < 3) return; // Security check - - rlBegin(RL_TRIANGLES); - rlColor4ub(color.r, color.g, color.b, color.a); - - for (int i = 2; i < pointCount; i++) - { - if ((i%2) == 0) - { - rlVertex3f(points[i].x, points[i].y, points[i].z); - rlVertex3f(points[i - 2].x, points[i - 2].y, points[i - 2].z); - rlVertex3f(points[i - 1].x, points[i - 1].y, points[i - 1].z); - } - else - { - rlVertex3f(points[i].x, points[i].y, points[i].z); - rlVertex3f(points[i - 1].x, points[i - 1].y, points[i - 1].z); - rlVertex3f(points[i - 2].x, points[i - 2].y, points[i - 2].z); - } - } - rlEnd(); -} - -// Draw cube -// NOTE: Cube position is the center position -void DrawCube(Vector3 position, float width, float height, float length, Color color) -{ - float x = 0.0f; - float y = 0.0f; - float z = 0.0f; - - rlPushMatrix(); - // NOTE: Transformation is applied in inverse order (scale -> rotate -> translate) - rlTranslatef(position.x, position.y, position.z); - //rlRotatef(45, 0, 1, 0); - //rlScalef(1.0f, 1.0f, 1.0f); // NOTE: Vertices are directly scaled on definition - - rlBegin(RL_TRIANGLES); - rlColor4ub(color.r, color.g, color.b, color.a); - - // Front face - rlNormal3f(0.0f, 0.0f, 1.0f); - rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left - rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right - rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left - - rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Right - rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left - rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right - - // Back face - rlNormal3f(0.0f, 0.0f, -1.0f); - rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Left - rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left - rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right - - rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right - rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right - rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left - - // Top face - rlNormal3f(0.0f, 1.0f, 0.0f); - rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left - rlVertex3f(x - width/2, y + height/2, z + length/2); // Bottom Left - rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right - - rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right - rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left - rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right - - // Bottom face - rlNormal3f(0.0f, -1.0f, 0.0f); - rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left - rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right - rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left - - rlVertex3f(x + width/2, y - height/2, z - length/2); // Top Right - rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right - rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left - - // Right face - rlNormal3f(1.0f, 0.0f, 0.0f); - rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right - rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right - rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left - - rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left - rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right - rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left - - // Left face - rlNormal3f(-1.0f, 0.0f, 0.0f); - rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right - rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left - rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Right - - rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left - rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left - rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right - rlEnd(); - rlPopMatrix(); -} - -// Draw cube (Vector version) -void DrawCubeV(Vector3 position, Vector3 size, Color color) -{ - DrawCube(position, size.x, size.y, size.z, color); -} - -// Draw cube wires -void DrawCubeWires(Vector3 position, float width, float height, float length, Color color) -{ - float x = 0.0f; - float y = 0.0f; - float z = 0.0f; - - rlPushMatrix(); - rlTranslatef(position.x, position.y, position.z); - - rlBegin(RL_LINES); - rlColor4ub(color.r, color.g, color.b, color.a); - - // Front face - //------------------------------------------------------------------ - // Bottom line - rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom left - rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom right - - // Left line - rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom right - rlVertex3f(x + width/2, y + height/2, z + length/2); // Top right - - // Top line - rlVertex3f(x + width/2, y + height/2, z + length/2); // Top right - rlVertex3f(x - width/2, y + height/2, z + length/2); // Top left - - // Right line - rlVertex3f(x - width/2, y + height/2, z + length/2); // Top left - rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom left - - // Back face - //------------------------------------------------------------------ - // Bottom line - rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom left - rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom right - - // Left line - rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom right - rlVertex3f(x + width/2, y + height/2, z - length/2); // Top right - - // Top line - rlVertex3f(x + width/2, y + height/2, z - length/2); // Top right - rlVertex3f(x - width/2, y + height/2, z - length/2); // Top left - - // Right line - rlVertex3f(x - width/2, y + height/2, z - length/2); // Top left - rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom left - - // Top face - //------------------------------------------------------------------ - // Left line - rlVertex3f(x - width/2, y + height/2, z + length/2); // Top left front - rlVertex3f(x - width/2, y + height/2, z - length/2); // Top left back - - // Right line - rlVertex3f(x + width/2, y + height/2, z + length/2); // Top right front - rlVertex3f(x + width/2, y + height/2, z - length/2); // Top right back - - // Bottom face - //------------------------------------------------------------------ - // Left line - rlVertex3f(x - width/2, y - height/2, z + length/2); // Top left front - rlVertex3f(x - width/2, y - height/2, z - length/2); // Top left back - - // Right line - rlVertex3f(x + width/2, y - height/2, z + length/2); // Top right front - rlVertex3f(x + width/2, y - height/2, z - length/2); // Top right back - rlEnd(); - rlPopMatrix(); -} - -// Draw cube wires (vector version) -void DrawCubeWiresV(Vector3 position, Vector3 size, Color color) -{ - DrawCubeWires(position, size.x, size.y, size.z, color); -} - -// Draw sphere -void DrawSphere(Vector3 centerPos, float radius, Color color) -{ - DrawSphereEx(centerPos, radius, 16, 16, color); -} - -// Draw sphere with extended parameters -void DrawSphereEx(Vector3 centerPos, float radius, int rings, int slices, Color color) -{ -#if 0 - // Basic implementation, do not use it! - // For a sphere with 16 rings and 16 slices it requires 8640 cos()/sin() function calls! - // New optimized version below only requires 4 cos()/sin() calls - - rlPushMatrix(); - // NOTE: Transformation is applied in inverse order (scale -> translate) - rlTranslatef(centerPos.x, centerPos.y, centerPos.z); - rlScalef(radius, radius, radius); - - rlBegin(RL_TRIANGLES); - rlColor4ub(color.r, color.g, color.b, color.a); - - for (int i = 0; i < (rings + 2); i++) - { - for (int j = 0; j < slices; j++) - { - rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)), - sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)), - cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices))); - rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)), - sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))), - cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices))); - rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*j/slices)), - sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))), - cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*j/slices))); - - rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)), - sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)), - cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices))); - rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)), - sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i))), - cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices))); - rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)), - sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))), - cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices))); - } - } - rlEnd(); - rlPopMatrix(); -#endif - - rlPushMatrix(); - // NOTE: Transformation is applied in inverse order (scale -> translate) - rlTranslatef(centerPos.x, centerPos.y, centerPos.z); - rlScalef(radius, radius, radius); - - rlBegin(RL_TRIANGLES); - rlColor4ub(color.r, color.g, color.b, color.a); - - float ringangle = DEG2RAD*(180.0f/(rings + 1)); // Angle between latitudinal parallels - float sliceangle = DEG2RAD*(360.0f/slices); // Angle between longitudinal meridians - - float cosring = cosf(ringangle); - float sinring = sinf(ringangle); - float cosslice = cosf(sliceangle); - float sinslice = sinf(sliceangle); - - Vector3 vertices[4] = { 0 }; // Required to store face vertices - vertices[2] = (Vector3){ 0, 1, 0 }; - vertices[3] = (Vector3){ sinring, cosring, 0 }; - - for (int i = 0; i < rings + 1; i++) - { - for (int j = 0; j < slices; j++) - { - vertices[0] = vertices[2]; // Rotate around y axis to set up vertices for next face - vertices[1] = vertices[3]; - vertices[2] = (Vector3){ cosslice*vertices[2].x - sinslice*vertices[2].z, vertices[2].y, sinslice*vertices[2].x + cosslice*vertices[2].z }; // Rotation matrix around y axis - vertices[3] = (Vector3){ cosslice*vertices[3].x - sinslice*vertices[3].z, vertices[3].y, sinslice*vertices[3].x + cosslice*vertices[3].z }; - - rlVertex3f(vertices[0].x, vertices[0].y, vertices[0].z); - rlVertex3f(vertices[3].x, vertices[3].y, vertices[3].z); - rlVertex3f(vertices[1].x, vertices[1].y, vertices[1].z); - - rlVertex3f(vertices[0].x, vertices[0].y, vertices[0].z); - rlVertex3f(vertices[2].x, vertices[2].y, vertices[2].z); - rlVertex3f(vertices[3].x, vertices[3].y, vertices[3].z); - } - - vertices[2] = vertices[3]; // Rotate around z axis to set up starting vertices for next ring - vertices[3] = (Vector3){ cosring*vertices[3].x + sinring*vertices[3].y, -sinring*vertices[3].x + cosring*vertices[3].y, vertices[3].z }; // Rotation matrix around z axis - } - rlEnd(); - rlPopMatrix(); -} - -// Draw sphere wires -void DrawSphereWires(Vector3 centerPos, float radius, int rings, int slices, Color color) -{ - rlPushMatrix(); - // NOTE: Transformation is applied in inverse order (scale -> translate) - rlTranslatef(centerPos.x, centerPos.y, centerPos.z); - rlScalef(radius, radius, radius); - - rlBegin(RL_LINES); - rlColor4ub(color.r, color.g, color.b, color.a); - - for (int i = 0; i < (rings + 2); i++) - { - for (int j = 0; j < slices; j++) - { - rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)), - sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)), - cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices))); - rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)), - sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))), - cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices))); - - rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)), - sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))), - cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices))); - rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*j/slices)), - sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))), - cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*j/slices))); - - rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*j/slices)), - sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))), - cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*j/slices))); - rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)), - sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)), - cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices))); - } - } - rlEnd(); - rlPopMatrix(); -} - -// Draw a cylinder -// NOTE: It could be also used for pyramid and cone -void DrawCylinder(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color) -{ - if (sides < 3) sides = 3; - - const float angleStep = 360.0f/sides; - - rlPushMatrix(); - rlTranslatef(position.x, position.y, position.z); - - rlBegin(RL_TRIANGLES); - rlColor4ub(color.r, color.g, color.b, color.a); - - if (radiusTop > 0) - { - // Draw Body ------------------------------------------------------------------------------------- - for (int i = 0; i < sides; i++) - { - rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom); //Bottom Left - rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusBottom, 0, cosf(DEG2RAD*(i+1)*angleStep)*radiusBottom); //Bottom Right - rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusTop, height, cosf(DEG2RAD*(i+1)*angleStep)*radiusTop); //Top Right - - rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusTop, height, cosf(DEG2RAD*i*angleStep)*radiusTop); //Top Left - rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom); //Bottom Left - rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusTop, height, cosf(DEG2RAD*(i+1)*angleStep)*radiusTop); //Top Right - } - - // Draw Cap -------------------------------------------------------------------------------------- - for (int i = 0; i < sides; i++) - { - rlVertex3f(0, height, 0); - rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusTop, height, cosf(DEG2RAD*i*angleStep)*radiusTop); - rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusTop, height, cosf(DEG2RAD*(i+1)*angleStep)*radiusTop); - } - } - else - { - // Draw Cone ------------------------------------------------------------------------------------- - for (int i = 0; i < sides; i++) - { - rlVertex3f(0, height, 0); - rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom); - rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusBottom, 0, cosf(DEG2RAD*(i+1)*angleStep)*radiusBottom); - } - } - - // Draw Base ----------------------------------------------------------------------------------------- - for (int i = 0; i < sides; i++) - { - rlVertex3f(0, 0, 0); - rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*(i+1)*angleStep)*radiusBottom); - rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom); - } - - rlEnd(); - rlPopMatrix(); -} - -// Draw a cylinder with base at startPos and top at endPos -// NOTE: It could be also used for pyramid and cone -void DrawCylinderEx(Vector3 startPos, Vector3 endPos, float startRadius, float endRadius, int sides, Color color) -{ - if (sides < 3) sides = 3; - - Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z }; - if ((direction.x == 0) && (direction.y == 0) && (direction.z == 0)) return; // Security check - - // Construct a basis of the base and the top face: - Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction)); - Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction)); - - float baseAngle = (2.0f*PI)/sides; - - rlBegin(RL_TRIANGLES); - rlColor4ub(color.r, color.g, color.b, color.a); - - for (int i = 0; i < sides; i++) - { - // Compute the four vertices - float s1 = sinf(baseAngle*(i + 0))*startRadius; - float c1 = cosf(baseAngle*(i + 0))*startRadius; - Vector3 w1 = { startPos.x + s1*b1.x + c1*b2.x, startPos.y + s1*b1.y + c1*b2.y, startPos.z + s1*b1.z + c1*b2.z }; - float s2 = sinf(baseAngle*(i + 1))*startRadius; - float c2 = cosf(baseAngle*(i + 1))*startRadius; - Vector3 w2 = { startPos.x + s2*b1.x + c2*b2.x, startPos.y + s2*b1.y + c2*b2.y, startPos.z + s2*b1.z + c2*b2.z }; - float s3 = sinf(baseAngle*(i + 0))*endRadius; - float c3 = cosf(baseAngle*(i + 0))*endRadius; - Vector3 w3 = { endPos.x + s3*b1.x + c3*b2.x, endPos.y + s3*b1.y + c3*b2.y, endPos.z + s3*b1.z + c3*b2.z }; - float s4 = sinf(baseAngle*(i + 1))*endRadius; - float c4 = cosf(baseAngle*(i + 1))*endRadius; - Vector3 w4 = { endPos.x + s4*b1.x + c4*b2.x, endPos.y + s4*b1.y + c4*b2.y, endPos.z + s4*b1.z + c4*b2.z }; - - if (startRadius > 0) - { - rlVertex3f(startPos.x, startPos.y, startPos.z); // | - rlVertex3f(w2.x, w2.y, w2.z); // T0 - rlVertex3f(w1.x, w1.y, w1.z); // | - } - // w2 x.-----------x startPos - rlVertex3f(w1.x, w1.y, w1.z); // | |\'. T0 / - rlVertex3f(w2.x, w2.y, w2.z); // T1 | \ '. / - rlVertex3f(w3.x, w3.y, w3.z); // | |T \ '. / - // | 2 \ T 'x w1 - rlVertex3f(w2.x, w2.y, w2.z); // | w4 x.---\-1-|---x endPos - rlVertex3f(w4.x, w4.y, w4.z); // T2 '. \ |T3/ - rlVertex3f(w3.x, w3.y, w3.z); // | '. \ | / - // '.\|/ - if (endRadius > 0) // 'x w3 - { - rlVertex3f(endPos.x, endPos.y, endPos.z); // | - rlVertex3f(w3.x, w3.y, w3.z); // T3 - rlVertex3f(w4.x, w4.y, w4.z); // | - } // - } - rlEnd(); -} - -// Draw a wired cylinder -// NOTE: It could be also used for pyramid and cone -void DrawCylinderWires(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color) -{ - if (sides < 3) sides = 3; - - const float angleStep = 360.0f/sides; - - rlPushMatrix(); - rlTranslatef(position.x, position.y, position.z); - - rlBegin(RL_LINES); - rlColor4ub(color.r, color.g, color.b, color.a); - - for (int i = 0; i < sides; i++) - { - rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom); - rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusBottom, 0, cosf(DEG2RAD*(i+1)*angleStep)*radiusBottom); - - rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusBottom, 0, cosf(DEG2RAD*(i+1)*angleStep)*radiusBottom); - rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusTop, height, cosf(DEG2RAD*(i+1)*angleStep)*radiusTop); - - rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusTop, height, cosf(DEG2RAD*(i+1)*angleStep)*radiusTop); - rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusTop, height, cosf(DEG2RAD*i*angleStep)*radiusTop); - - rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusTop, height, cosf(DEG2RAD*i*angleStep)*radiusTop); - rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom); - } - rlEnd(); - rlPopMatrix(); -} - - -// Draw a wired cylinder with base at startPos and top at endPos -// NOTE: It could be also used for pyramid and cone -void DrawCylinderWiresEx(Vector3 startPos, Vector3 endPos, float startRadius, float endRadius, int sides, Color color) -{ - if (sides < 3) sides = 3; - - Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z }; - if ((direction.x == 0) && (direction.y == 0) && (direction.z == 0)) return; // Security check - - // Construct a basis of the base and the top face: - Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction)); - Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction)); - - float baseAngle = (2.0f*PI)/sides; - - rlBegin(RL_LINES); - rlColor4ub(color.r, color.g, color.b, color.a); - - for (int i = 0; i < sides; i++) - { - // Compute the four vertices - float s1 = sinf(baseAngle*(i + 0))*startRadius; - float c1 = cosf(baseAngle*(i + 0))*startRadius; - Vector3 w1 = { startPos.x + s1*b1.x + c1*b2.x, startPos.y + s1*b1.y + c1*b2.y, startPos.z + s1*b1.z + c1*b2.z }; - float s2 = sinf(baseAngle*(i + 1))*startRadius; - float c2 = cosf(baseAngle*(i + 1))*startRadius; - Vector3 w2 = { startPos.x + s2*b1.x + c2*b2.x, startPos.y + s2*b1.y + c2*b2.y, startPos.z + s2*b1.z + c2*b2.z }; - float s3 = sinf(baseAngle*(i + 0))*endRadius; - float c3 = cosf(baseAngle*(i + 0))*endRadius; - Vector3 w3 = { endPos.x + s3*b1.x + c3*b2.x, endPos.y + s3*b1.y + c3*b2.y, endPos.z + s3*b1.z + c3*b2.z }; - float s4 = sinf(baseAngle*(i + 1))*endRadius; - float c4 = cosf(baseAngle*(i + 1))*endRadius; - Vector3 w4 = { endPos.x + s4*b1.x + c4*b2.x, endPos.y + s4*b1.y + c4*b2.y, endPos.z + s4*b1.z + c4*b2.z }; - - rlVertex3f(w1.x, w1.y, w1.z); - rlVertex3f(w2.x, w2.y, w2.z); - - rlVertex3f(w1.x, w1.y, w1.z); - rlVertex3f(w3.x, w3.y, w3.z); - - rlVertex3f(w3.x, w3.y, w3.z); - rlVertex3f(w4.x, w4.y, w4.z); - } - rlEnd(); -} - -// Draw a capsule with the center of its sphere caps at startPos and endPos -void DrawCapsule(Vector3 startPos, Vector3 endPos, float radius, int slices, int rings, Color color) -{ - if (slices < 3) slices = 3; - - Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z }; - - // draw a sphere if start and end points are the same - bool sphereCase = (direction.x == 0) && (direction.y == 0) && (direction.z == 0); - if (sphereCase) direction = (Vector3){0.0f, 1.0f, 0.0f}; - - // Construct a basis of the base and the caps: - Vector3 b0 = Vector3Normalize(direction); - Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction)); - Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction)); - Vector3 capCenter = endPos; - - float baseSliceAngle = (2.0f*PI)/slices; - float baseRingAngle = PI*0.5f/rings; - - rlBegin(RL_TRIANGLES); - rlColor4ub(color.r, color.g, color.b, color.a); - - // render both caps - for (int c = 0; c < 2; c++) - { - for (int i = 0; i < rings; i++) - { - for (int j = 0; j < slices; j++) - { - - // we build up the rings from capCenter in the direction of the 'direction' vector we computed earlier - - // as we iterate through the rings they must be placed higher above the center, the height we need is sin(angle(i)) - // as we iterate through the rings they must get smaller by the cos(angle(i)) - - // compute the four vertices - float ringSin1 = sinf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 0 )); - float ringCos1 = cosf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 0 )); - Vector3 w1 = (Vector3){ - capCenter.x + (sinf(baseRingAngle*( i + 0 ))*b0.x + ringSin1*b1.x + ringCos1*b2.x)*radius, - capCenter.y + (sinf(baseRingAngle*( i + 0 ))*b0.y + ringSin1*b1.y + ringCos1*b2.y)*radius, - capCenter.z + (sinf(baseRingAngle*( i + 0 ))*b0.z + ringSin1*b1.z + ringCos1*b2.z)*radius - }; - float ringSin2 = sinf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 0 )); - float ringCos2 = cosf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 0 )); - Vector3 w2 = (Vector3){ - capCenter.x + (sinf(baseRingAngle*( i + 0 ))*b0.x + ringSin2*b1.x + ringCos2*b2.x)*radius, - capCenter.y + (sinf(baseRingAngle*( i + 0 ))*b0.y + ringSin2*b1.y + ringCos2*b2.y)*radius, - capCenter.z + (sinf(baseRingAngle*( i + 0 ))*b0.z + ringSin2*b1.z + ringCos2*b2.z)*radius - }; - - float ringSin3 = sinf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 1 )); - float ringCos3 = cosf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 1 )); - Vector3 w3 = (Vector3){ - capCenter.x + (sinf(baseRingAngle*( i + 1 ))*b0.x + ringSin3*b1.x + ringCos3*b2.x)*radius, - capCenter.y + (sinf(baseRingAngle*( i + 1 ))*b0.y + ringSin3*b1.y + ringCos3*b2.y)*radius, - capCenter.z + (sinf(baseRingAngle*( i + 1 ))*b0.z + ringSin3*b1.z + ringCos3*b2.z)*radius - }; - float ringSin4 = sinf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 1 )); - float ringCos4 = cosf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 1 )); - Vector3 w4 = (Vector3){ - capCenter.x + (sinf(baseRingAngle*( i + 1 ))*b0.x + ringSin4*b1.x + ringCos4*b2.x)*radius, - capCenter.y + (sinf(baseRingAngle*( i + 1 ))*b0.y + ringSin4*b1.y + ringCos4*b2.y)*radius, - capCenter.z + (sinf(baseRingAngle*( i + 1 ))*b0.z + ringSin4*b1.z + ringCos4*b2.z)*radius - }; - - // Make sure cap triangle normals are facing outwards - if (c == 0) - { - rlVertex3f(w1.x, w1.y, w1.z); - rlVertex3f(w2.x, w2.y, w2.z); - rlVertex3f(w3.x, w3.y, w3.z); - - rlVertex3f(w2.x, w2.y, w2.z); - rlVertex3f(w4.x, w4.y, w4.z); - rlVertex3f(w3.x, w3.y, w3.z); - } - else - { - rlVertex3f(w1.x, w1.y, w1.z); - rlVertex3f(w3.x, w3.y, w3.z); - rlVertex3f(w2.x, w2.y, w2.z); - - rlVertex3f(w2.x, w2.y, w2.z); - rlVertex3f(w3.x, w3.y, w3.z); - rlVertex3f(w4.x, w4.y, w4.z); - } - } - } - capCenter = startPos; - b0 = Vector3Scale(b0, -1.0f); - } - // render middle - if (!sphereCase) - { - for (int j = 0; j < slices; j++) - { - // compute the four vertices - float ringSin1 = sinf(baseSliceAngle*(j + 0))*radius; - float ringCos1 = cosf(baseSliceAngle*(j + 0))*radius; - Vector3 w1 = { - startPos.x + ringSin1*b1.x + ringCos1*b2.x, - startPos.y + ringSin1*b1.y + ringCos1*b2.y, - startPos.z + ringSin1*b1.z + ringCos1*b2.z - }; - float ringSin2 = sinf(baseSliceAngle*(j + 1))*radius; - float ringCos2 = cosf(baseSliceAngle*(j + 1))*radius; - Vector3 w2 = { - startPos.x + ringSin2*b1.x + ringCos2*b2.x, - startPos.y + ringSin2*b1.y + ringCos2*b2.y, - startPos.z + ringSin2*b1.z + ringCos2*b2.z - }; - - float ringSin3 = sinf(baseSliceAngle*(j + 0))*radius; - float ringCos3 = cosf(baseSliceAngle*(j + 0))*radius; - Vector3 w3 = { - endPos.x + ringSin3*b1.x + ringCos3*b2.x, - endPos.y + ringSin3*b1.y + ringCos3*b2.y, - endPos.z + ringSin3*b1.z + ringCos3*b2.z - }; - float ringSin4 = sinf(baseSliceAngle*(j + 1))*radius; - float ringCos4 = cosf(baseSliceAngle*(j + 1))*radius; - Vector3 w4 = { - endPos.x + ringSin4*b1.x + ringCos4*b2.x, - endPos.y + ringSin4*b1.y + ringCos4*b2.y, - endPos.z + ringSin4*b1.z + ringCos4*b2.z - }; - // w2 x.-----------x startPos - rlVertex3f(w1.x, w1.y, w1.z); // | |\'. T0 / - rlVertex3f(w2.x, w2.y, w2.z); // T1 | \ '. / - rlVertex3f(w3.x, w3.y, w3.z); // | |T \ '. / - // | 2 \ T 'x w1 - rlVertex3f(w2.x, w2.y, w2.z); // | w4 x.---\-1-|---x endPos - rlVertex3f(w4.x, w4.y, w4.z); // T2 '. \ |T3/ - rlVertex3f(w3.x, w3.y, w3.z); // | '. \ | / - // '.\|/ - // 'x w3 - } - } - rlEnd(); -} - -// Draw capsule wires with the center of its sphere caps at startPos and endPos -void DrawCapsuleWires(Vector3 startPos, Vector3 endPos, float radius, int slices, int rings, Color color) -{ - if (slices < 3) slices = 3; - - Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z }; - - // draw a sphere if start and end points are the same - bool sphereCase = (direction.x == 0) && (direction.y == 0) && (direction.z == 0); - if (sphereCase) direction = (Vector3){0.0f, 1.0f, 0.0f}; - - // Construct a basis of the base and the caps: - Vector3 b0 = Vector3Normalize(direction); - Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction)); - Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction)); - Vector3 capCenter = endPos; - - float baseSliceAngle = (2.0f*PI)/slices; - float baseRingAngle = PI*0.5f/rings; - - rlBegin(RL_LINES); - rlColor4ub(color.r, color.g, color.b, color.a); - - // render both caps - for (int c = 0; c < 2; c++) - { - for (int i = 0; i < rings; i++) - { - for (int j = 0; j < slices; j++) - { - - // we build up the rings from capCenter in the direction of the 'direction' vector we computed earlier - - // as we iterate through the rings they must be placed higher above the center, the height we need is sin(angle(i)) - // as we iterate through the rings they must get smaller by the cos(angle(i)) - - // compute the four vertices - float ringSin1 = sinf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 0 )); - float ringCos1 = cosf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 0 )); - Vector3 w1 = (Vector3){ - capCenter.x + (sinf(baseRingAngle*( i + 0 ))*b0.x + ringSin1*b1.x + ringCos1*b2.x)*radius, - capCenter.y + (sinf(baseRingAngle*( i + 0 ))*b0.y + ringSin1*b1.y + ringCos1*b2.y)*radius, - capCenter.z + (sinf(baseRingAngle*( i + 0 ))*b0.z + ringSin1*b1.z + ringCos1*b2.z)*radius - }; - float ringSin2 = sinf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 0 )); - float ringCos2 = cosf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 0 )); - Vector3 w2 = (Vector3){ - capCenter.x + (sinf(baseRingAngle*( i + 0 ))*b0.x + ringSin2*b1.x + ringCos2*b2.x)*radius, - capCenter.y + (sinf(baseRingAngle*( i + 0 ))*b0.y + ringSin2*b1.y + ringCos2*b2.y)*radius, - capCenter.z + (sinf(baseRingAngle*( i + 0 ))*b0.z + ringSin2*b1.z + ringCos2*b2.z)*radius - }; - - float ringSin3 = sinf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 1 )); - float ringCos3 = cosf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 1 )); - Vector3 w3 = (Vector3){ - capCenter.x + (sinf(baseRingAngle*( i + 1 ))*b0.x + ringSin3*b1.x + ringCos3*b2.x)*radius, - capCenter.y + (sinf(baseRingAngle*( i + 1 ))*b0.y + ringSin3*b1.y + ringCos3*b2.y)*radius, - capCenter.z + (sinf(baseRingAngle*( i + 1 ))*b0.z + ringSin3*b1.z + ringCos3*b2.z)*radius - }; - float ringSin4 = sinf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 1 )); - float ringCos4 = cosf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 1 )); - Vector3 w4 = (Vector3){ - capCenter.x + (sinf(baseRingAngle*( i + 1 ))*b0.x + ringSin4*b1.x + ringCos4*b2.x)*radius, - capCenter.y + (sinf(baseRingAngle*( i + 1 ))*b0.y + ringSin4*b1.y + ringCos4*b2.y)*radius, - capCenter.z + (sinf(baseRingAngle*( i + 1 ))*b0.z + ringSin4*b1.z + ringCos4*b2.z)*radius - }; - - rlVertex3f(w1.x, w1.y, w1.z); - rlVertex3f(w2.x, w2.y, w2.z); - - rlVertex3f(w2.x, w2.y, w2.z); - rlVertex3f(w3.x, w3.y, w3.z); - - rlVertex3f(w1.x, w1.y, w1.z); - rlVertex3f(w3.x, w3.y, w3.z); - - rlVertex3f(w2.x, w2.y, w2.z); - rlVertex3f(w4.x, w4.y, w4.z); - - rlVertex3f(w3.x, w3.y, w3.z); - rlVertex3f(w4.x, w4.y, w4.z); - } - } - capCenter = startPos; - b0 = Vector3Scale(b0, -1.0f); - } - // render middle - if (!sphereCase) - { - for (int j = 0; j < slices; j++) - { - // compute the four vertices - float ringSin1 = sinf(baseSliceAngle*(j + 0))*radius; - float ringCos1 = cosf(baseSliceAngle*(j + 0))*radius; - Vector3 w1 = { - startPos.x + ringSin1*b1.x + ringCos1*b2.x, - startPos.y + ringSin1*b1.y + ringCos1*b2.y, - startPos.z + ringSin1*b1.z + ringCos1*b2.z - }; - float ringSin2 = sinf(baseSliceAngle*(j + 1))*radius; - float ringCos2 = cosf(baseSliceAngle*(j + 1))*radius; - Vector3 w2 = { - startPos.x + ringSin2*b1.x + ringCos2*b2.x, - startPos.y + ringSin2*b1.y + ringCos2*b2.y, - startPos.z + ringSin2*b1.z + ringCos2*b2.z - }; - - float ringSin3 = sinf(baseSliceAngle*(j + 0))*radius; - float ringCos3 = cosf(baseSliceAngle*(j + 0))*radius; - Vector3 w3 = { - endPos.x + ringSin3*b1.x + ringCos3*b2.x, - endPos.y + ringSin3*b1.y + ringCos3*b2.y, - endPos.z + ringSin3*b1.z + ringCos3*b2.z - }; - float ringSin4 = sinf(baseSliceAngle*(j + 1))*radius; - float ringCos4 = cosf(baseSliceAngle*(j + 1))*radius; - Vector3 w4 = { - endPos.x + ringSin4*b1.x + ringCos4*b2.x, - endPos.y + ringSin4*b1.y + ringCos4*b2.y, - endPos.z + ringSin4*b1.z + ringCos4*b2.z - }; - - rlVertex3f(w1.x, w1.y, w1.z); - rlVertex3f(w3.x, w3.y, w3.z); - - rlVertex3f(w2.x, w2.y, w2.z); - rlVertex3f(w4.x, w4.y, w4.z); - - rlVertex3f(w2.x, w2.y, w2.z); - rlVertex3f(w3.x, w3.y, w3.z); - } - } - rlEnd(); -} - -// Draw a plane -void DrawPlane(Vector3 centerPos, Vector2 size, Color color) -{ - // NOTE: Plane is always created on XZ ground - rlPushMatrix(); - rlTranslatef(centerPos.x, centerPos.y, centerPos.z); - rlScalef(size.x, 1.0f, size.y); - - rlBegin(RL_QUADS); - rlColor4ub(color.r, color.g, color.b, color.a); - rlNormal3f(0.0f, 1.0f, 0.0f); - - rlVertex3f(-0.5f, 0.0f, -0.5f); - rlVertex3f(-0.5f, 0.0f, 0.5f); - rlVertex3f(0.5f, 0.0f, 0.5f); - rlVertex3f(0.5f, 0.0f, -0.5f); - rlEnd(); - rlPopMatrix(); -} - -// Draw a ray line -void DrawRay(Ray ray, Color color) -{ - float scale = 10000; - - rlBegin(RL_LINES); - rlColor4ub(color.r, color.g, color.b, color.a); - rlColor4ub(color.r, color.g, color.b, color.a); - - rlVertex3f(ray.position.x, ray.position.y, ray.position.z); - rlVertex3f(ray.position.x + ray.direction.x*scale, ray.position.y + ray.direction.y*scale, ray.position.z + ray.direction.z*scale); - rlEnd(); -} - -// Draw a grid centered at (0, 0, 0) -void DrawGrid(int slices, float spacing) -{ - int halfSlices = slices/2; - - rlBegin(RL_LINES); - for (int i = -halfSlices; i <= halfSlices; i++) - { - if (i == 0) - { - rlColor3f(0.5f, 0.5f, 0.5f); - } - else - { - rlColor3f(0.75f, 0.75f, 0.75f); - } - - rlVertex3f((float)i*spacing, 0.0f, (float)-halfSlices*spacing); - rlVertex3f((float)i*spacing, 0.0f, (float)halfSlices*spacing); - - rlVertex3f((float)-halfSlices*spacing, 0.0f, (float)i*spacing); - rlVertex3f((float)halfSlices*spacing, 0.0f, (float)i*spacing); - } - rlEnd(); -} - -// Load model from files (mesh and material) -Model LoadModel(const char *fileName) -{ - Model model = { 0 }; - -#if defined(SUPPORT_FILEFORMAT_OBJ) - if (IsFileExtension(fileName, ".obj")) model = LoadOBJ(fileName); -#endif -#if defined(SUPPORT_FILEFORMAT_IQM) - if (IsFileExtension(fileName, ".iqm")) model = LoadIQM(fileName); -#endif -#if defined(SUPPORT_FILEFORMAT_GLTF) - if (IsFileExtension(fileName, ".gltf") || IsFileExtension(fileName, ".glb")) model = LoadGLTF(fileName); -#endif -#if defined(SUPPORT_FILEFORMAT_VOX) - if (IsFileExtension(fileName, ".vox")) model = LoadVOX(fileName); -#endif -#if defined(SUPPORT_FILEFORMAT_M3D) - if (IsFileExtension(fileName, ".m3d")) model = LoadM3D(fileName); -#endif - - // Make sure model transform is set to identity matrix! - model.transform = MatrixIdentity(); - - if ((model.meshCount != 0) && (model.meshes != NULL)) - { - // Upload vertex data to GPU (static meshes) - for (int i = 0; i < model.meshCount; i++) UploadMesh(&model.meshes[i], false); - } - else TRACELOG(LOG_WARNING, "MESH: [%s] Failed to load model mesh(es) data", fileName); - - if (model.materialCount == 0) - { - TRACELOG(LOG_WARNING, "MATERIAL: [%s] Failed to load model material data, default to white material", fileName); - - model.materialCount = 1; - model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material)); - model.materials[0] = LoadMaterialDefault(); - - if (model.meshMaterial == NULL) model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int)); - } - - return model; -} - -// Load model from generated mesh -// WARNING: A shallow copy of mesh is generated, passed by value, -// as long as struct contains pointers to data and some values, we get a copy -// of mesh pointing to same data as original version... be careful! -Model LoadModelFromMesh(Mesh mesh) -{ - Model model = { 0 }; - - model.transform = MatrixIdentity(); - - model.meshCount = 1; - model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh)); - model.meshes[0] = mesh; - - model.materialCount = 1; - model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material)); - model.materials[0] = LoadMaterialDefault(); - - model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int)); - model.meshMaterial[0] = 0; // First material index - - return model; -} - -// Check if a model is ready -bool IsModelReady(Model model) -{ - bool result = false; - - if ((model.meshes != NULL) && // Validate model contains some mesh - (model.materials != NULL) && // Validate model contains some material (at least default one) - (model.meshMaterial != NULL) && // Validate mesh-material linkage - (model.meshCount > 0) && // Validate mesh count - (model.materialCount > 0)) result = true; // Validate material count - - // NOTE: This is a very general model validation, many elements could be validated from a model... - - return result; -} - -// Unload model (meshes/materials) from memory (RAM and/or VRAM) -// NOTE: This function takes care of all model elements, for a detailed control -// over them, use UnloadMesh() and UnloadMaterial() -void UnloadModel(Model model) -{ - // Unload meshes - for (int i = 0; i < model.meshCount; i++) UnloadMesh(model.meshes[i]); - - // Unload materials maps - // NOTE: As the user could be sharing shaders and textures between models, - // we don't unload the material but just free its maps, - // the user is responsible for freeing models shaders and textures - for (int i = 0; i < model.materialCount; i++) RL_FREE(model.materials[i].maps); - - // Unload arrays - RL_FREE(model.meshes); - RL_FREE(model.materials); - RL_FREE(model.meshMaterial); - - // Unload animation data - RL_FREE(model.bones); - RL_FREE(model.bindPose); - - TRACELOG(LOG_INFO, "MODEL: Unloaded model (and meshes) from RAM and VRAM"); -} - -// Compute model bounding box limits (considers all meshes) -BoundingBox GetModelBoundingBox(Model model) -{ - BoundingBox bounds = { 0 }; - - if (model.meshCount > 0) - { - Vector3 temp = { 0 }; - bounds = GetMeshBoundingBox(model.meshes[0]); - - for (int i = 1; i < model.meshCount; i++) - { - BoundingBox tempBounds = GetMeshBoundingBox(model.meshes[i]); - - temp.x = (bounds.min.x < tempBounds.min.x)? bounds.min.x : tempBounds.min.x; - temp.y = (bounds.min.y < tempBounds.min.y)? bounds.min.y : tempBounds.min.y; - temp.z = (bounds.min.z < tempBounds.min.z)? bounds.min.z : tempBounds.min.z; - bounds.min = temp; - - temp.x = (bounds.max.x > tempBounds.max.x)? bounds.max.x : tempBounds.max.x; - temp.y = (bounds.max.y > tempBounds.max.y)? bounds.max.y : tempBounds.max.y; - temp.z = (bounds.max.z > tempBounds.max.z)? bounds.max.z : tempBounds.max.z; - bounds.max = temp; - } - } - - // Apply model.transform to bounding box - // WARNING: Current BoundingBox structure design does not support rotation transformations, - // in those cases is up to the user to calculate the proper box bounds (8 vertices transformed) - bounds.min = Vector3Transform(bounds.min, model.transform); - bounds.max = Vector3Transform(bounds.max, model.transform); - - return bounds; -} - -// Upload vertex data into a VAO (if supported) and VBO -void UploadMesh(Mesh *mesh, bool dynamic) -{ - if (mesh->vaoId > 0) - { - // Check if mesh has already been loaded in GPU - TRACELOG(LOG_WARNING, "VAO: [ID %i] Trying to re-load an already loaded mesh", mesh->vaoId); - return; - } - - mesh->vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VERTEX_BUFFERS, sizeof(unsigned int)); - - mesh->vaoId = 0; // Vertex Array Object - mesh->vboId[0] = 0; // Vertex buffer: positions - mesh->vboId[1] = 0; // Vertex buffer: texcoords - mesh->vboId[2] = 0; // Vertex buffer: normals - mesh->vboId[3] = 0; // Vertex buffer: colors - mesh->vboId[4] = 0; // Vertex buffer: tangents - mesh->vboId[5] = 0; // Vertex buffer: texcoords2 - mesh->vboId[6] = 0; // Vertex buffer: indices - -#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) - mesh->vaoId = rlLoadVertexArray(); - rlEnableVertexArray(mesh->vaoId); - - // NOTE: Vertex attributes must be uploaded considering default locations points and available vertex data - - // Enable vertex attributes: position (shader-location = 0) - void *vertices = (mesh->animVertices != NULL)? mesh->animVertices : mesh->vertices; - mesh->vboId[0] = rlLoadVertexBuffer(vertices, mesh->vertexCount*3*sizeof(float), dynamic); - rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_POSITION, 3, RL_FLOAT, 0, 0, 0); - rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_POSITION); - - // Enable vertex attributes: texcoords (shader-location = 1) - mesh->vboId[1] = rlLoadVertexBuffer(mesh->texcoords, mesh->vertexCount*2*sizeof(float), dynamic); - rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD, 2, RL_FLOAT, 0, 0, 0); - rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD); - - // WARNING: When setting default vertex attribute values, the values for each generic vertex attribute - // is part of current state, and it is maintained even if a different program object is used - - if (mesh->normals != NULL) - { - // Enable vertex attributes: normals (shader-location = 2) - void *normals = (mesh->animNormals != NULL)? mesh->animNormals : mesh->normals; - mesh->vboId[2] = rlLoadVertexBuffer(normals, mesh->vertexCount*3*sizeof(float), dynamic); - rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL, 3, RL_FLOAT, 0, 0, 0); - rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL); - } - else - { - // Default vertex attribute: normal - // WARNING: Default value provided to shader if location available - float value[3] = { 1.0f, 1.0f, 1.0f }; - rlSetVertexAttributeDefault(RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL, value, SHADER_ATTRIB_VEC3, 3); - rlDisableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL); - } - - if (mesh->colors != NULL) - { - // Enable vertex attribute: color (shader-location = 3) - mesh->vboId[3] = rlLoadVertexBuffer(mesh->colors, mesh->vertexCount*4*sizeof(unsigned char), dynamic); - rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR, 4, RL_UNSIGNED_BYTE, 1, 0, 0); - rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR); - } - else - { - // Default vertex attribute: color - // WARNING: Default value provided to shader if location available - float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; // WHITE - rlSetVertexAttributeDefault(RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR, value, SHADER_ATTRIB_VEC4, 4); - rlDisableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR); - } - - if (mesh->tangents != NULL) - { - // Enable vertex attribute: tangent (shader-location = 4) - mesh->vboId[4] = rlLoadVertexBuffer(mesh->tangents, mesh->vertexCount*4*sizeof(float), dynamic); - rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT, 4, RL_FLOAT, 0, 0, 0); - rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT); - } - else - { - // Default vertex attribute: tangent - // WARNING: Default value provided to shader if location available - float value[4] = { 0.0f, 0.0f, 0.0f, 0.0f }; - rlSetVertexAttributeDefault(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT, value, SHADER_ATTRIB_VEC4, 4); - rlDisableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT); - } - - if (mesh->texcoords2 != NULL) - { - // Enable vertex attribute: texcoord2 (shader-location = 5) - mesh->vboId[5] = rlLoadVertexBuffer(mesh->texcoords2, mesh->vertexCount*2*sizeof(float), dynamic); - rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2, 2, RL_FLOAT, 0, 0, 0); - rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2); - } - else - { - // Default vertex attribute: texcoord2 - // WARNING: Default value provided to shader if location available - float value[2] = { 0.0f, 0.0f }; - rlSetVertexAttributeDefault(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2, value, SHADER_ATTRIB_VEC2, 2); - rlDisableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2); - } - - if (mesh->indices != NULL) - { - mesh->vboId[6] = rlLoadVertexBufferElement(mesh->indices, mesh->triangleCount*3*sizeof(unsigned short), dynamic); - } - - if (mesh->vaoId > 0) TRACELOG(LOG_INFO, "VAO: [ID %i] Mesh uploaded successfully to VRAM (GPU)", mesh->vaoId); - else TRACELOG(LOG_INFO, "VBO: Mesh uploaded successfully to VRAM (GPU)"); - - rlDisableVertexArray(); -#endif -} - -// Update mesh vertex data in GPU for a specific buffer index -void UpdateMeshBuffer(Mesh mesh, int index, const void *data, int dataSize, int offset) -{ - rlUpdateVertexBuffer(mesh.vboId[index], data, dataSize, offset); -} - -// Draw a 3d mesh with material and transform -void DrawMesh(Mesh mesh, Material material, Matrix transform) -{ -#if defined(GRAPHICS_API_OPENGL_11) - #define GL_VERTEX_ARRAY 0x8074 - #define GL_NORMAL_ARRAY 0x8075 - #define GL_COLOR_ARRAY 0x8076 - #define GL_TEXTURE_COORD_ARRAY 0x8078 - - rlEnableTexture(material.maps[MATERIAL_MAP_DIFFUSE].texture.id); - - rlEnableStatePointer(GL_VERTEX_ARRAY, mesh.vertices); - rlEnableStatePointer(GL_TEXTURE_COORD_ARRAY, mesh.texcoords); - rlEnableStatePointer(GL_NORMAL_ARRAY, mesh.normals); - rlEnableStatePointer(GL_COLOR_ARRAY, mesh.colors); - - rlPushMatrix(); - rlMultMatrixf(MatrixToFloat(transform)); - rlColor4ub(material.maps[MATERIAL_MAP_DIFFUSE].color.r, - material.maps[MATERIAL_MAP_DIFFUSE].color.g, - material.maps[MATERIAL_MAP_DIFFUSE].color.b, - material.maps[MATERIAL_MAP_DIFFUSE].color.a); - - if (mesh.indices != NULL) rlDrawVertexArrayElements(0, mesh.triangleCount*3, mesh.indices); - else rlDrawVertexArray(0, mesh.vertexCount); - rlPopMatrix(); - - rlDisableStatePointer(GL_VERTEX_ARRAY); - rlDisableStatePointer(GL_TEXTURE_COORD_ARRAY); - rlDisableStatePointer(GL_NORMAL_ARRAY); - rlDisableStatePointer(GL_COLOR_ARRAY); - - rlDisableTexture(); -#endif - -#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) - // Bind shader program - rlEnableShader(material.shader.id); - - // Send required data to shader (matrices, values) - //----------------------------------------------------- - // Upload to shader material.colDiffuse - if (material.shader.locs[SHADER_LOC_COLOR_DIFFUSE] != -1) - { - float values[4] = { - (float)material.maps[MATERIAL_MAP_DIFFUSE].color.r/255.0f, - (float)material.maps[MATERIAL_MAP_DIFFUSE].color.g/255.0f, - (float)material.maps[MATERIAL_MAP_DIFFUSE].color.b/255.0f, - (float)material.maps[MATERIAL_MAP_DIFFUSE].color.a/255.0f - }; - - rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_DIFFUSE], values, SHADER_UNIFORM_VEC4, 1); - } - - // Upload to shader material.colSpecular (if location available) - if (material.shader.locs[SHADER_LOC_COLOR_SPECULAR] != -1) - { - float values[4] = { - (float)material.maps[MATERIAL_MAP_SPECULAR].color.r/255.0f, - (float)material.maps[MATERIAL_MAP_SPECULAR].color.g/255.0f, - (float)material.maps[MATERIAL_MAP_SPECULAR].color.b/255.0f, - (float)material.maps[MATERIAL_MAP_SPECULAR].color.a/255.0f - }; - - rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_SPECULAR], values, SHADER_UNIFORM_VEC4, 1); - } - - // Get a copy of current matrices to work with, - // just in case stereo render is required, and we need to modify them - // NOTE: At this point the modelview matrix just contains the view matrix (camera) - // That's because BeginMode3D() sets it and there is no model-drawing function - // that modifies it, all use rlPushMatrix() and rlPopMatrix() - Matrix matModel = MatrixIdentity(); - Matrix matView = rlGetMatrixModelview(); - Matrix matModelView = MatrixIdentity(); - Matrix matProjection = rlGetMatrixProjection(); - - // Upload view and projection matrices (if locations available) - if (material.shader.locs[SHADER_LOC_MATRIX_VIEW] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_VIEW], matView); - if (material.shader.locs[SHADER_LOC_MATRIX_PROJECTION] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_PROJECTION], matProjection); - - // Accumulate several model transformations: - // transform: model transformation provided (includes DrawModel() params combined with model.transform) - // rlGetMatrixTransform(): rlgl internal transform matrix due to push/pop matrix stack - matModel = MatrixMultiply(transform, rlGetMatrixTransform()); - - // Model transformation matrix is sent to shader uniform location: SHADER_LOC_MATRIX_MODEL - if (material.shader.locs[SHADER_LOC_MATRIX_MODEL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MODEL], matModel); - - // Get model-view matrix - matModelView = MatrixMultiply(matModel, matView); - - // Upload model normal matrix (if locations available) - if (material.shader.locs[SHADER_LOC_MATRIX_NORMAL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_NORMAL], MatrixTranspose(MatrixInvert(matModel))); - //----------------------------------------------------- - - // Bind active texture maps (if available) - for (int i = 0; i < MAX_MATERIAL_MAPS; i++) - { - if (material.maps[i].texture.id > 0) - { - // Select current shader texture slot - rlActiveTextureSlot(i); - - // Enable texture for active slot - if ((i == MATERIAL_MAP_IRRADIANCE) || - (i == MATERIAL_MAP_PREFILTER) || - (i == MATERIAL_MAP_CUBEMAP)) rlEnableTextureCubemap(material.maps[i].texture.id); - else rlEnableTexture(material.maps[i].texture.id); - - rlSetUniform(material.shader.locs[SHADER_LOC_MAP_DIFFUSE + i], &i, SHADER_UNIFORM_INT, 1); - } - } - - // Try binding vertex array objects (VAO) or use VBOs if not possible - // WARNING: UploadMesh() enables all vertex attributes available in mesh and sets default attribute values - // for shader expected vertex attributes that are not provided by the mesh (i.e. colors) - // This could be a dangerous approach because different meshes with different shaders can enable/disable some attributes - if (!rlEnableVertexArray(mesh.vaoId)) - { - // Bind mesh VBO data: vertex position (shader-location = 0) - rlEnableVertexBuffer(mesh.vboId[0]); - rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION], 3, RL_FLOAT, 0, 0, 0); - rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION]); - - // Bind mesh VBO data: vertex texcoords (shader-location = 1) - rlEnableVertexBuffer(mesh.vboId[1]); - rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01], 2, RL_FLOAT, 0, 0, 0); - rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01]); - - if (material.shader.locs[SHADER_LOC_VERTEX_NORMAL] != -1) - { - // Bind mesh VBO data: vertex normals (shader-location = 2) - rlEnableVertexBuffer(mesh.vboId[2]); - rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL], 3, RL_FLOAT, 0, 0, 0); - rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL]); - } - - // Bind mesh VBO data: vertex colors (shader-location = 3, if available) - if (material.shader.locs[SHADER_LOC_VERTEX_COLOR] != -1) - { - if (mesh.vboId[3] != 0) - { - rlEnableVertexBuffer(mesh.vboId[3]); - rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR], 4, RL_UNSIGNED_BYTE, 1, 0, 0); - rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]); - } - else - { - // Set default value for defined vertex attribute in shader but not provided by mesh - // WARNING: It could result in GPU undefined behaviour - float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; - rlSetVertexAttributeDefault(material.shader.locs[SHADER_LOC_VERTEX_COLOR], value, SHADER_ATTRIB_VEC4, 4); - rlDisableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]); - } - } - - // Bind mesh VBO data: vertex tangents (shader-location = 4, if available) - if (material.shader.locs[SHADER_LOC_VERTEX_TANGENT] != -1) - { - rlEnableVertexBuffer(mesh.vboId[4]); - rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT], 4, RL_FLOAT, 0, 0, 0); - rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT]); - } - - // Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available) - if (material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02] != -1) - { - rlEnableVertexBuffer(mesh.vboId[5]); - rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02], 2, RL_FLOAT, 0, 0, 0); - rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02]); - } - - if (mesh.indices != NULL) rlEnableVertexBufferElement(mesh.vboId[6]); - } - - int eyeCount = 1; - if (rlIsStereoRenderEnabled()) eyeCount = 2; - - for (int eye = 0; eye < eyeCount; eye++) - { - // Calculate model-view-projection matrix (MVP) - Matrix matModelViewProjection = MatrixIdentity(); - if (eyeCount == 1) matModelViewProjection = MatrixMultiply(matModelView, matProjection); - else - { - // Setup current eye viewport (half screen width) - rlViewport(eye*rlGetFramebufferWidth()/2, 0, rlGetFramebufferWidth()/2, rlGetFramebufferHeight()); - matModelViewProjection = MatrixMultiply(MatrixMultiply(matModelView, rlGetMatrixViewOffsetStereo(eye)), rlGetMatrixProjectionStereo(eye)); - } - - // Send combined model-view-projection matrix to shader - rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MVP], matModelViewProjection); - - // Draw mesh - if (mesh.indices != NULL) rlDrawVertexArrayElements(0, mesh.triangleCount*3, 0); - else rlDrawVertexArray(0, mesh.vertexCount); - } - - // Unbind all bound texture maps - for (int i = 0; i < MAX_MATERIAL_MAPS; i++) - { - if (material.maps[i].texture.id > 0) - { - // Select current shader texture slot - rlActiveTextureSlot(i); - - // Disable texture for active slot - if ((i == MATERIAL_MAP_IRRADIANCE) || - (i == MATERIAL_MAP_PREFILTER) || - (i == MATERIAL_MAP_CUBEMAP)) rlDisableTextureCubemap(); - else rlDisableTexture(); - } - } - - // Disable all possible vertex array objects (or VBOs) - rlDisableVertexArray(); - rlDisableVertexBuffer(); - rlDisableVertexBufferElement(); - - // Disable shader program - rlDisableShader(); - - // Restore rlgl internal modelview and projection matrices - rlSetMatrixModelview(matView); - rlSetMatrixProjection(matProjection); -#endif -} - -// Draw multiple mesh instances with material and different transforms -void DrawMeshInstanced(Mesh mesh, Material material, const Matrix *transforms, int instances) -{ -#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) - // Instancing required variables - float16 *instanceTransforms = NULL; - unsigned int instancesVboId = 0; - - // Bind shader program - rlEnableShader(material.shader.id); - - // Send required data to shader (matrices, values) - //----------------------------------------------------- - // Upload to shader material.colDiffuse - if (material.shader.locs[SHADER_LOC_COLOR_DIFFUSE] != -1) - { - float values[4] = { - (float)material.maps[MATERIAL_MAP_DIFFUSE].color.r/255.0f, - (float)material.maps[MATERIAL_MAP_DIFFUSE].color.g/255.0f, - (float)material.maps[MATERIAL_MAP_DIFFUSE].color.b/255.0f, - (float)material.maps[MATERIAL_MAP_DIFFUSE].color.a/255.0f - }; - - rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_DIFFUSE], values, SHADER_UNIFORM_VEC4, 1); - } - - // Upload to shader material.colSpecular (if location available) - if (material.shader.locs[SHADER_LOC_COLOR_SPECULAR] != -1) - { - float values[4] = { - (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.r/255.0f, - (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.g/255.0f, - (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.b/255.0f, - (float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.a/255.0f - }; - - rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_SPECULAR], values, SHADER_UNIFORM_VEC4, 1); - } - - // Get a copy of current matrices to work with, - // just in case stereo render is required, and we need to modify them - // NOTE: At this point the modelview matrix just contains the view matrix (camera) - // That's because BeginMode3D() sets it and there is no model-drawing function - // that modifies it, all use rlPushMatrix() and rlPopMatrix() - Matrix matModel = MatrixIdentity(); - Matrix matView = rlGetMatrixModelview(); - Matrix matModelView = MatrixIdentity(); - Matrix matProjection = rlGetMatrixProjection(); - - // Upload view and projection matrices (if locations available) - if (material.shader.locs[SHADER_LOC_MATRIX_VIEW] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_VIEW], matView); - if (material.shader.locs[SHADER_LOC_MATRIX_PROJECTION] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_PROJECTION], matProjection); - - // Create instances buffer - instanceTransforms = (float16 *)RL_MALLOC(instances*sizeof(float16)); - - // Fill buffer with instances transformations as float16 arrays - for (int i = 0; i < instances; i++) instanceTransforms[i] = MatrixToFloatV(transforms[i]); - - // Enable mesh VAO to attach new buffer - rlEnableVertexArray(mesh.vaoId); - - // This could alternatively use a static VBO and either glMapBuffer() or glBufferSubData() - // It isn't clear which would be reliably faster in all cases and on all platforms, - // anecdotally glMapBuffer() seems very slow (syncs) while glBufferSubData() seems - // no faster, since we're transferring all the transform matrices anyway - instancesVboId = rlLoadVertexBuffer(instanceTransforms, instances*sizeof(float16), false); - - // Instances transformation matrices are send to shader attribute location: SHADER_LOC_MATRIX_MODEL - for (unsigned int i = 0; i < 4; i++) - { - rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i); - rlSetVertexAttribute(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i, 4, RL_FLOAT, 0, sizeof(Matrix), i*sizeof(Vector4)); - rlSetVertexAttributeDivisor(material.shader.locs[SHADER_LOC_MATRIX_MODEL] + i, 1); - } - - rlDisableVertexBuffer(); - rlDisableVertexArray(); - - // Accumulate internal matrix transform (push/pop) and view matrix - // NOTE: In this case, model instance transformation must be computed in the shader - matModelView = MatrixMultiply(rlGetMatrixTransform(), matView); - - // Upload model normal matrix (if locations available) - if (material.shader.locs[SHADER_LOC_MATRIX_NORMAL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_NORMAL], MatrixTranspose(MatrixInvert(matModel))); - //----------------------------------------------------- - - // Bind active texture maps (if available) - for (int i = 0; i < MAX_MATERIAL_MAPS; i++) - { - if (material.maps[i].texture.id > 0) - { - // Select current shader texture slot - rlActiveTextureSlot(i); - - // Enable texture for active slot - if ((i == MATERIAL_MAP_IRRADIANCE) || - (i == MATERIAL_MAP_PREFILTER) || - (i == MATERIAL_MAP_CUBEMAP)) rlEnableTextureCubemap(material.maps[i].texture.id); - else rlEnableTexture(material.maps[i].texture.id); - - rlSetUniform(material.shader.locs[SHADER_LOC_MAP_DIFFUSE + i], &i, SHADER_UNIFORM_INT, 1); - } - } - - // Try binding vertex array objects (VAO) - // or use VBOs if not possible - if (!rlEnableVertexArray(mesh.vaoId)) - { - // Bind mesh VBO data: vertex position (shader-location = 0) - rlEnableVertexBuffer(mesh.vboId[0]); - rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION], 3, RL_FLOAT, 0, 0, 0); - rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION]); - - // Bind mesh VBO data: vertex texcoords (shader-location = 1) - rlEnableVertexBuffer(mesh.vboId[1]); - rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01], 2, RL_FLOAT, 0, 0, 0); - rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01]); - - if (material.shader.locs[SHADER_LOC_VERTEX_NORMAL] != -1) - { - // Bind mesh VBO data: vertex normals (shader-location = 2) - rlEnableVertexBuffer(mesh.vboId[2]); - rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL], 3, RL_FLOAT, 0, 0, 0); - rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL]); - } - - // Bind mesh VBO data: vertex colors (shader-location = 3, if available) - if (material.shader.locs[SHADER_LOC_VERTEX_COLOR] != -1) - { - if (mesh.vboId[3] != 0) - { - rlEnableVertexBuffer(mesh.vboId[3]); - rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR], 4, RL_UNSIGNED_BYTE, 1, 0, 0); - rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]); - } - else - { - // Set default value for unused attribute - // NOTE: Required when using default shader and no VAO support - float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; - rlSetVertexAttributeDefault(material.shader.locs[SHADER_LOC_VERTEX_COLOR], value, SHADER_ATTRIB_VEC4, 4); - rlDisableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]); - } - } - - // Bind mesh VBO data: vertex tangents (shader-location = 4, if available) - if (material.shader.locs[SHADER_LOC_VERTEX_TANGENT] != -1) - { - rlEnableVertexBuffer(mesh.vboId[4]); - rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT], 4, RL_FLOAT, 0, 0, 0); - rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT]); - } - - // Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available) - if (material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02] != -1) - { - rlEnableVertexBuffer(mesh.vboId[5]); - rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02], 2, RL_FLOAT, 0, 0, 0); - rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02]); - } - - if (mesh.indices != NULL) rlEnableVertexBufferElement(mesh.vboId[6]); - } - - int eyeCount = 1; - if (rlIsStereoRenderEnabled()) eyeCount = 2; - - for (int eye = 0; eye < eyeCount; eye++) - { - // Calculate model-view-projection matrix (MVP) - Matrix matModelViewProjection = MatrixIdentity(); - if (eyeCount == 1) matModelViewProjection = MatrixMultiply(matModelView, matProjection); - else - { - // Setup current eye viewport (half screen width) - rlViewport(eye*rlGetFramebufferWidth()/2, 0, rlGetFramebufferWidth()/2, rlGetFramebufferHeight()); - matModelViewProjection = MatrixMultiply(MatrixMultiply(matModelView, rlGetMatrixViewOffsetStereo(eye)), rlGetMatrixProjectionStereo(eye)); - } - - // Send combined model-view-projection matrix to shader - rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MVP], matModelViewProjection); - - // Draw mesh instanced - if (mesh.indices != NULL) rlDrawVertexArrayElementsInstanced(0, mesh.triangleCount*3, 0, instances); - else rlDrawVertexArrayInstanced(0, mesh.vertexCount, instances); - } - - // Unbind all bound texture maps - for (int i = 0; i < MAX_MATERIAL_MAPS; i++) - { - if (material.maps[i].texture.id > 0) - { - // Select current shader texture slot - rlActiveTextureSlot(i); - - // Disable texture for active slot - if ((i == MATERIAL_MAP_IRRADIANCE) || - (i == MATERIAL_MAP_PREFILTER) || - (i == MATERIAL_MAP_CUBEMAP)) rlDisableTextureCubemap(); - else rlDisableTexture(); - } - } - - // Disable all possible vertex array objects (or VBOs) - rlDisableVertexArray(); - rlDisableVertexBuffer(); - rlDisableVertexBufferElement(); - - // Disable shader program - rlDisableShader(); - - // Remove instance transforms buffer - rlUnloadVertexBuffer(instancesVboId); - RL_FREE(instanceTransforms); -#endif -} - -// Unload mesh from memory (RAM and VRAM) -void UnloadMesh(Mesh mesh) -{ - // Unload rlgl mesh vboId data - rlUnloadVertexArray(mesh.vaoId); - - if (mesh.vboId != NULL) for (int i = 0; i < MAX_MESH_VERTEX_BUFFERS; i++) rlUnloadVertexBuffer(mesh.vboId[i]); - RL_FREE(mesh.vboId); - - RL_FREE(mesh.vertices); - RL_FREE(mesh.texcoords); - RL_FREE(mesh.normals); - RL_FREE(mesh.colors); - RL_FREE(mesh.tangents); - RL_FREE(mesh.texcoords2); - RL_FREE(mesh.indices); - - RL_FREE(mesh.animVertices); - RL_FREE(mesh.animNormals); - RL_FREE(mesh.boneWeights); - RL_FREE(mesh.boneIds); -} - -// Export mesh data to file -bool ExportMesh(Mesh mesh, const char *fileName) -{ - bool success = false; - - if (IsFileExtension(fileName, ".obj")) - { - // Estimated data size, it should be enough... - int dataSize = mesh.vertexCount*(int)strlen("v 0000.00f 0000.00f 0000.00f") + - mesh.vertexCount*(int)strlen("vt 0.000f 0.00f") + - mesh.vertexCount*(int)strlen("vn 0.000f 0.00f 0.00f") + - mesh.triangleCount*(int)strlen("f 00000/00000/00000 00000/00000/00000 00000/00000/00000"); - - // NOTE: Text data buffer size is estimated considering mesh data size - char *txtData = (char *)RL_CALLOC(dataSize*2 + 2000, sizeof(char)); - - int byteCount = 0; - byteCount += sprintf(txtData + byteCount, "# //////////////////////////////////////////////////////////////////////////////////\n"); - byteCount += sprintf(txtData + byteCount, "# // //\n"); - byteCount += sprintf(txtData + byteCount, "# // rMeshOBJ exporter v1.0 - Mesh exported as triangle faces and not optimized //\n"); - byteCount += sprintf(txtData + byteCount, "# // //\n"); - byteCount += sprintf(txtData + byteCount, "# // more info and bugs-report: github.com/raysan5/raylib //\n"); - byteCount += sprintf(txtData + byteCount, "# // feedback and support: ray[at]raylib.com //\n"); - byteCount += sprintf(txtData + byteCount, "# // //\n"); - byteCount += sprintf(txtData + byteCount, "# // Copyright (c) 2018-2024 Ramon Santamaria (@raysan5) //\n"); - byteCount += sprintf(txtData + byteCount, "# // //\n"); - byteCount += sprintf(txtData + byteCount, "# //////////////////////////////////////////////////////////////////////////////////\n\n"); - byteCount += sprintf(txtData + byteCount, "# Vertex Count: %i\n", mesh.vertexCount); - byteCount += sprintf(txtData + byteCount, "# Triangle Count: %i\n\n", mesh.triangleCount); - - byteCount += sprintf(txtData + byteCount, "g mesh\n"); - - for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3) - { - byteCount += sprintf(txtData + byteCount, "v %.2f %.2f %.2f\n", mesh.vertices[v], mesh.vertices[v + 1], mesh.vertices[v + 2]); - } - - for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 2) - { - byteCount += sprintf(txtData + byteCount, "vt %.3f %.3f\n", mesh.texcoords[v], mesh.texcoords[v + 1]); - } - - for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3) - { - byteCount += sprintf(txtData + byteCount, "vn %.3f %.3f %.3f\n", mesh.normals[v], mesh.normals[v + 1], mesh.normals[v + 2]); - } - - if (mesh.indices != NULL) - { - for (int i = 0, v = 0; i < mesh.triangleCount; i++, v += 3) - { - byteCount += sprintf(txtData + byteCount, "f %i/%i/%i %i/%i/%i %i/%i/%i\n", - mesh.indices[v] + 1, mesh.indices[v] + 1, mesh.indices[v] + 1, - mesh.indices[v + 1] + 1, mesh.indices[v + 1] + 1, mesh.indices[v + 1] + 1, - mesh.indices[v + 2] + 1, mesh.indices[v + 2] + 1, mesh.indices[v + 2] + 1); - } - } - else - { - for (int i = 0, v = 1; i < mesh.triangleCount; i++, v += 3) - { - byteCount += sprintf(txtData + byteCount, "f %i/%i/%i %i/%i/%i %i/%i/%i\n", v, v, v, v + 1, v + 1, v + 1, v + 2, v + 2, v + 2); - } - } - - byteCount += sprintf(txtData + byteCount, "\n"); - - // NOTE: Text data length exported is determined by '\0' (NULL) character - success = SaveFileText(fileName, txtData); - - RL_FREE(txtData); - } - else if (IsFileExtension(fileName, ".raw")) - { - // TODO: Support additional file formats to export mesh vertex data - } - - return success; -} - -// Export mesh as code file (.h) defining multiple arrays of vertex attributes -bool ExportMeshAsCode(Mesh mesh, const char *fileName) -{ - bool success = false; - -#ifndef TEXT_BYTES_PER_LINE - #define TEXT_BYTES_PER_LINE 20 -#endif - - // NOTE: Text data buffer size is fixed to 64MB - char *txtData = (char *)RL_CALLOC(64*1024*1024, sizeof(char)); // 64 MB - - int byteCount = 0; - byteCount += sprintf(txtData + byteCount, "////////////////////////////////////////////////////////////////////////////////////////\n"); - byteCount += sprintf(txtData + byteCount, "// //\n"); - byteCount += sprintf(txtData + byteCount, "// MeshAsCode exporter v1.0 - Mesh vertex data exported as arrays //\n"); - byteCount += sprintf(txtData + byteCount, "// //\n"); - byteCount += sprintf(txtData + byteCount, "// more info and bugs-report: github.com/raysan5/raylib //\n"); - byteCount += sprintf(txtData + byteCount, "// feedback and support: ray[at]raylib.com //\n"); - byteCount += sprintf(txtData + byteCount, "// //\n"); - byteCount += sprintf(txtData + byteCount, "// Copyright (c) 2023 Ramon Santamaria (@raysan5) //\n"); - byteCount += sprintf(txtData + byteCount, "// //\n"); - byteCount += sprintf(txtData + byteCount, "////////////////////////////////////////////////////////////////////////////////////////\n\n"); - - // Get file name from path and convert variable name to uppercase - char varFileName[256] = { 0 }; - strcpy(varFileName, GetFileNameWithoutExt(fileName)); - for (int i = 0; varFileName[i] != '\0'; i++) if ((varFileName[i] >= 'a') && (varFileName[i] <= 'z')) { varFileName[i] = varFileName[i] - 32; } - - // Add image information - byteCount += sprintf(txtData + byteCount, "// Mesh basic information\n"); - byteCount += sprintf(txtData + byteCount, "#define %s_VERTEX_COUNT %i\n", varFileName, mesh.vertexCount); - byteCount += sprintf(txtData + byteCount, "#define %s_TRIANGLE_COUNT %i\n\n", varFileName, mesh.triangleCount); - - // Define vertex attributes data as separate arrays - //----------------------------------------------------------------------------------------- - if (mesh.vertices != NULL) // Vertex position (XYZ - 3 components per vertex - float) - { - byteCount += sprintf(txtData + byteCount, "static float %s_VERTEX_DATA[%i] = { ", varFileName, mesh.vertexCount*3); - for (int i = 0; i < mesh.vertexCount*3 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%.3ff,\n" : "%.3ff, "), mesh.vertices[i]); - byteCount += sprintf(txtData + byteCount, "%.3ff };\n\n", mesh.vertices[mesh.vertexCount*3 - 1]); - } - - if (mesh.texcoords != NULL) // Vertex texture coordinates (UV - 2 components per vertex - float) - { - byteCount += sprintf(txtData + byteCount, "static float %s_TEXCOORD_DATA[%i] = { ", varFileName, mesh.vertexCount*2); - for (int i = 0; i < mesh.vertexCount*2 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%.3ff,\n" : "%.3ff, "), mesh.texcoords[i]); - byteCount += sprintf(txtData + byteCount, "%.3ff };\n\n", mesh.texcoords[mesh.vertexCount*2 - 1]); - } - - if (mesh.texcoords2 != NULL) // Vertex texture coordinates (UV - 2 components per vertex - float) - { - byteCount += sprintf(txtData + byteCount, "static float %s_TEXCOORD2_DATA[%i] = { ", varFileName, mesh.vertexCount*2); - for (int i = 0; i < mesh.vertexCount*2 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%.3ff,\n" : "%.3ff, "), mesh.texcoords2[i]); - byteCount += sprintf(txtData + byteCount, "%.3ff };\n\n", mesh.texcoords2[mesh.vertexCount*2 - 1]); - } - - if (mesh.normals != NULL) // Vertex normals (XYZ - 3 components per vertex - float) - { - byteCount += sprintf(txtData + byteCount, "static float %s_NORMAL_DATA[%i] = { ", varFileName, mesh.vertexCount*3); - for (int i = 0; i < mesh.vertexCount*3 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%.3ff,\n" : "%.3ff, "), mesh.normals[i]); - byteCount += sprintf(txtData + byteCount, "%.3ff };\n\n", mesh.normals[mesh.vertexCount*3 - 1]); - } - - if (mesh.tangents != NULL) // Vertex tangents (XYZW - 4 components per vertex - float) - { - byteCount += sprintf(txtData + byteCount, "static float %s_TANGENT_DATA[%i] = { ", varFileName, mesh.vertexCount*4); - for (int i = 0; i < mesh.vertexCount*4 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%.3ff,\n" : "%.3ff, "), mesh.tangents[i]); - byteCount += sprintf(txtData + byteCount, "%.3ff };\n\n", mesh.tangents[mesh.vertexCount*4 - 1]); - } - - if (mesh.colors != NULL) // Vertex colors (RGBA - 4 components per vertex - unsigned char) - { - byteCount += sprintf(txtData + byteCount, "static unsigned char %s_COLOR_DATA[%i] = { ", varFileName, mesh.vertexCount*4); - for (int i = 0; i < mesh.vertexCount*4 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "0x%x,\n" : "0x%x, "), mesh.colors[i]); - byteCount += sprintf(txtData + byteCount, "0x%x };\n\n", mesh.colors[mesh.vertexCount*4 - 1]); - } - - if (mesh.indices != NULL) // Vertex indices (3 index per triangle - unsigned short) - { - byteCount += sprintf(txtData + byteCount, "static unsigned short %s_INDEX_DATA[%i] = { ", varFileName, mesh.triangleCount*3); - for (int i = 0; i < mesh.triangleCount*3 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%i,\n" : "%i, "), mesh.indices[i]); - byteCount += sprintf(txtData + byteCount, "%i };\n", mesh.indices[mesh.triangleCount*3 - 1]); - } - //----------------------------------------------------------------------------------------- - - // NOTE: Text data size exported is determined by '\0' (NULL) character - success = SaveFileText(fileName, txtData); - - RL_FREE(txtData); - - //if (success != 0) TRACELOG(LOG_INFO, "FILEIO: [%s] Image as code exported successfully", fileName); - //else TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to export image as code", fileName); - - return success; -} - - -#if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL) -// Process obj materials -static void ProcessMaterialsOBJ(Material *materials, tinyobj_material_t *mats, int materialCount) -{ - // Init model mats - for (int m = 0; m < materialCount; m++) - { - // Init material to default - // NOTE: Uses default shader, which only supports MATERIAL_MAP_DIFFUSE - materials[m] = LoadMaterialDefault(); - - if (mats == NULL) continue; - - // Get default texture, in case no texture is defined - // NOTE: rlgl default texture is a 1x1 pixel UNCOMPRESSED_R8G8B8A8 - materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = (Texture2D){ rlGetTextureIdDefault(), 1, 1, 1, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8 }; - - if (mats[m].diffuse_texname != NULL) materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = LoadTexture(mats[m].diffuse_texname); //char *diffuse_texname; // map_Kd - else materials[m].maps[MATERIAL_MAP_DIFFUSE].color = (Color){ (unsigned char)(mats[m].diffuse[0]*255.0f), (unsigned char)(mats[m].diffuse[1]*255.0f), (unsigned char)(mats[m].diffuse[2]*255.0f), 255 }; //float diffuse[3]; - materials[m].maps[MATERIAL_MAP_DIFFUSE].value = 0.0f; - - if (mats[m].specular_texname != NULL) materials[m].maps[MATERIAL_MAP_SPECULAR].texture = LoadTexture(mats[m].specular_texname); //char *specular_texname; // map_Ks - materials[m].maps[MATERIAL_MAP_SPECULAR].color = (Color){ (unsigned char)(mats[m].specular[0]*255.0f), (unsigned char)(mats[m].specular[1]*255.0f), (unsigned char)(mats[m].specular[2]*255.0f), 255 }; //float specular[3]; - materials[m].maps[MATERIAL_MAP_SPECULAR].value = 0.0f; - - if (mats[m].bump_texname != NULL) materials[m].maps[MATERIAL_MAP_NORMAL].texture = LoadTexture(mats[m].bump_texname); //char *bump_texname; // map_bump, bump - materials[m].maps[MATERIAL_MAP_NORMAL].color = WHITE; - materials[m].maps[MATERIAL_MAP_NORMAL].value = mats[m].shininess; - - materials[m].maps[MATERIAL_MAP_EMISSION].color = (Color){ (unsigned char)(mats[m].emission[0]*255.0f), (unsigned char)(mats[m].emission[1]*255.0f), (unsigned char)(mats[m].emission[2]*255.0f), 255 }; //float emission[3]; - - if (mats[m].displacement_texname != NULL) materials[m].maps[MATERIAL_MAP_HEIGHT].texture = LoadTexture(mats[m].displacement_texname); //char *displacement_texname; // disp - } -} -#endif - -// Load materials from model file -Material *LoadMaterials(const char *fileName, int *materialCount) -{ - Material *materials = NULL; - unsigned int count = 0; - - // TODO: Support IQM and GLTF for materials parsing - -#if defined(SUPPORT_FILEFORMAT_MTL) - if (IsFileExtension(fileName, ".mtl")) - { - tinyobj_material_t *mats = NULL; - - int result = tinyobj_parse_mtl_file(&mats, &count, fileName); - if (result != TINYOBJ_SUCCESS) TRACELOG(LOG_WARNING, "MATERIAL: [%s] Failed to parse materials file", fileName); - - materials = RL_MALLOC(count*sizeof(Material)); - ProcessMaterialsOBJ(materials, mats, count); - - tinyobj_materials_free(mats, count); - } -#else - TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to load material file", fileName); -#endif - - *materialCount = count; - return materials; -} - -// Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps) -Material LoadMaterialDefault(void) -{ - Material material = { 0 }; - material.maps = (MaterialMap *)RL_CALLOC(MAX_MATERIAL_MAPS, sizeof(MaterialMap)); - - // Using rlgl default shader - material.shader.id = rlGetShaderIdDefault(); - material.shader.locs = rlGetShaderLocsDefault(); - - // Using rlgl default texture (1x1 pixel, UNCOMPRESSED_R8G8B8A8, 1 mipmap) - material.maps[MATERIAL_MAP_DIFFUSE].texture = (Texture2D){ rlGetTextureIdDefault(), 1, 1, 1, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8 }; - //material.maps[MATERIAL_MAP_NORMAL].texture; // NOTE: By default, not set - //material.maps[MATERIAL_MAP_SPECULAR].texture; // NOTE: By default, not set - - material.maps[MATERIAL_MAP_DIFFUSE].color = WHITE; // Diffuse color - material.maps[MATERIAL_MAP_SPECULAR].color = WHITE; // Specular color - - return material; -} - -// Check if a material is ready -bool IsMaterialReady(Material material) -{ - bool result = false; - - if ((material.maps != NULL) && // Validate material contain some map - (material.shader.id > 0)) result = true; // Validate material shader is valid - - return result; -} - -// Unload material from memory -void UnloadMaterial(Material material) -{ - // Unload material shader (avoid unloading default shader, managed by raylib) - if (material.shader.id != rlGetShaderIdDefault()) UnloadShader(material.shader); - - // Unload loaded texture maps (avoid unloading default texture, managed by raylib) - if (material.maps != NULL) - { - for (int i = 0; i < MAX_MATERIAL_MAPS; i++) - { - if (material.maps[i].texture.id != rlGetTextureIdDefault()) rlUnloadTexture(material.maps[i].texture.id); - } - } - - RL_FREE(material.maps); -} - -// Set texture for a material map type (MATERIAL_MAP_DIFFUSE, MATERIAL_MAP_SPECULAR...) -// NOTE: Previous texture should be manually unloaded -void SetMaterialTexture(Material *material, int mapType, Texture2D texture) -{ - material->maps[mapType].texture = texture; -} - -// Set the material for a mesh -void SetModelMeshMaterial(Model *model, int meshId, int materialId) -{ - if (meshId >= model->meshCount) TRACELOG(LOG_WARNING, "MESH: Id greater than mesh count"); - else if (materialId >= model->materialCount) TRACELOG(LOG_WARNING, "MATERIAL: Id greater than material count"); - else model->meshMaterial[meshId] = materialId; -} - -// Load model animations from file -ModelAnimation *LoadModelAnimations(const char *fileName, int *animCount) -{ - ModelAnimation *animations = NULL; - -#if defined(SUPPORT_FILEFORMAT_IQM) - if (IsFileExtension(fileName, ".iqm")) animations = LoadModelAnimationsIQM(fileName, animCount); -#endif -#if defined(SUPPORT_FILEFORMAT_M3D) - if (IsFileExtension(fileName, ".m3d")) animations = LoadModelAnimationsM3D(fileName, animCount); -#endif -#if defined(SUPPORT_FILEFORMAT_GLTF) - if (IsFileExtension(fileName, ".gltf;.glb")) animations = LoadModelAnimationsGLTF(fileName, animCount); -#endif - - return animations; -} - -// Update model animated vertex data (positions and normals) for a given frame -// NOTE: Updated data is uploaded to GPU -void UpdateModelAnimation(Model model, ModelAnimation anim, int frame) -{ - if ((anim.frameCount > 0) && (anim.bones != NULL) && (anim.framePoses != NULL)) - { - if (frame >= anim.frameCount) frame = frame%anim.frameCount; - - for (int m = 0; m < model.meshCount; m++) - { - Mesh mesh = model.meshes[m]; - - if (mesh.boneIds == NULL || mesh.boneWeights == NULL) - { - TRACELOG(LOG_WARNING, "MODEL: UpdateModelAnimation(): Mesh %i has no connection to bones", m); - continue; - } - - bool updated = false; // Flag to check when anim vertex information is updated - Vector3 animVertex = { 0 }; - Vector3 animNormal = { 0 }; - - Vector3 inTranslation = { 0 }; - Quaternion inRotation = { 0 }; - // Vector3 inScale = { 0 }; - - Vector3 outTranslation = { 0 }; - Quaternion outRotation = { 0 }; - Vector3 outScale = { 0 }; - - int boneId = 0; - int boneCounter = 0; - float boneWeight = 0.0; - - const int vValues = mesh.vertexCount*3; - for (int vCounter = 0; vCounter < vValues; vCounter += 3) - { - mesh.animVertices[vCounter] = 0; - mesh.animVertices[vCounter + 1] = 0; - mesh.animVertices[vCounter + 2] = 0; - - if (mesh.animNormals != NULL) - { - mesh.animNormals[vCounter] = 0; - mesh.animNormals[vCounter + 1] = 0; - mesh.animNormals[vCounter + 2] = 0; - } - - // Iterates over 4 bones per vertex - for (int j = 0; j < 4; j++, boneCounter++) - { - boneWeight = mesh.boneWeights[boneCounter]; - - // Early stop when no transformation will be applied - if (boneWeight == 0.0f) continue; - - boneId = mesh.boneIds[boneCounter]; - //int boneIdParent = model.bones[boneId].parent; - inTranslation = model.bindPose[boneId].translation; - inRotation = model.bindPose[boneId].rotation; - //inScale = model.bindPose[boneId].scale; - outTranslation = anim.framePoses[frame][boneId].translation; - outRotation = anim.framePoses[frame][boneId].rotation; - outScale = anim.framePoses[frame][boneId].scale; - - // Vertices processing - // NOTE: We use meshes.vertices (default vertex position) to calculate meshes.animVertices (animated vertex position) - animVertex = (Vector3){ mesh.vertices[vCounter], mesh.vertices[vCounter + 1], mesh.vertices[vCounter + 2] }; - animVertex = Vector3Subtract(animVertex, inTranslation); - animVertex = Vector3Multiply(animVertex, outScale); - animVertex = Vector3RotateByQuaternion(animVertex, QuaternionMultiply(outRotation, QuaternionInvert(inRotation))); - animVertex = Vector3Add(animVertex, outTranslation); - //animVertex = Vector3Transform(animVertex, model.transform); - mesh.animVertices[vCounter] += animVertex.x*boneWeight; - mesh.animVertices[vCounter + 1] += animVertex.y*boneWeight; - mesh.animVertices[vCounter + 2] += animVertex.z*boneWeight; - updated = true; - - // Normals processing - // NOTE: We use meshes.baseNormals (default normal) to calculate meshes.normals (animated normals) - if (mesh.normals != NULL) - { - animNormal = (Vector3){ mesh.normals[vCounter], mesh.normals[vCounter + 1], mesh.normals[vCounter + 2] }; - animNormal = Vector3RotateByQuaternion(animNormal, QuaternionMultiply(outRotation, QuaternionInvert(inRotation))); - mesh.animNormals[vCounter] += animNormal.x*boneWeight; - mesh.animNormals[vCounter + 1] += animNormal.y*boneWeight; - mesh.animNormals[vCounter + 2] += animNormal.z*boneWeight; - } - } - } - - // Upload new vertex data to GPU for model drawing - // NOTE: Only update data when values changed - if (updated) - { - rlUpdateVertexBuffer(mesh.vboId[0], mesh.animVertices, mesh.vertexCount*3*sizeof(float), 0); // Update vertex position - rlUpdateVertexBuffer(mesh.vboId[2], mesh.animNormals, mesh.vertexCount*3*sizeof(float), 0); // Update vertex normals - } - } - } -} - -// Unload animation array data -void UnloadModelAnimations(ModelAnimation *animations, int animCount) -{ - for (int i = 0; i < animCount; i++) UnloadModelAnimation(animations[i]); - RL_FREE(animations); -} - -// Unload animation data -void UnloadModelAnimation(ModelAnimation anim) -{ - for (int i = 0; i < anim.frameCount; i++) RL_FREE(anim.framePoses[i]); - - RL_FREE(anim.bones); - RL_FREE(anim.framePoses); -} - -// Check model animation skeleton match -// NOTE: Only number of bones and parent connections are checked -bool IsModelAnimationValid(Model model, ModelAnimation anim) -{ - int result = true; - - if (model.boneCount != anim.boneCount) result = false; - else - { - for (int i = 0; i < model.boneCount; i++) - { - if (model.bones[i].parent != anim.bones[i].parent) { result = false; break; } - } - } - - return result; -} - -#if defined(SUPPORT_MESH_GENERATION) -// Generate polygonal mesh -Mesh GenMeshPoly(int sides, float radius) -{ - Mesh mesh = { 0 }; - - if (sides < 3) return mesh; // Security check - - int vertexCount = sides*3; - - // Vertices definition - Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3)); - - float d = 0.0f, dStep = 360.0f/sides; - for (int v = 0; v < vertexCount - 2; v += 3) - { - vertices[v] = (Vector3){ 0.0f, 0.0f, 0.0f }; - vertices[v + 1] = (Vector3){ sinf(DEG2RAD*d)*radius, 0.0f, cosf(DEG2RAD*d)*radius }; - vertices[v + 2] = (Vector3){ sinf(DEG2RAD*(d+dStep))*radius, 0.0f, cosf(DEG2RAD*(d+dStep))*radius }; - d += dStep; - } - - // Normals definition - Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3)); - for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up; - - // TexCoords definition - Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2)); - for (int n = 0; n < vertexCount; n++) texcoords[n] = (Vector2){ 0.0f, 0.0f }; - - mesh.vertexCount = vertexCount; - mesh.triangleCount = sides; - mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); - mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float)); - mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); - - // Mesh vertices position array - for (int i = 0; i < mesh.vertexCount; i++) - { - mesh.vertices[3*i] = vertices[i].x; - mesh.vertices[3*i + 1] = vertices[i].y; - mesh.vertices[3*i + 2] = vertices[i].z; - } - - // Mesh texcoords array - for (int i = 0; i < mesh.vertexCount; i++) - { - mesh.texcoords[2*i] = texcoords[i].x; - mesh.texcoords[2*i + 1] = texcoords[i].y; - } - - // Mesh normals array - for (int i = 0; i < mesh.vertexCount; i++) - { - mesh.normals[3*i] = normals[i].x; - mesh.normals[3*i + 1] = normals[i].y; - mesh.normals[3*i + 2] = normals[i].z; - } - - RL_FREE(vertices); - RL_FREE(normals); - RL_FREE(texcoords); - - // Upload vertex data to GPU (static mesh) - // NOTE: mesh.vboId array is allocated inside UploadMesh() - UploadMesh(&mesh, false); - - return mesh; -} - -// Generate plane mesh (with subdivisions) -Mesh GenMeshPlane(float width, float length, int resX, int resZ) -{ - Mesh mesh = { 0 }; - -#define CUSTOM_MESH_GEN_PLANE -#if defined(CUSTOM_MESH_GEN_PLANE) - resX++; - resZ++; - - // Vertices definition - int vertexCount = resX*resZ; // vertices get reused for the faces - - Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3)); - for (int z = 0; z < resZ; z++) - { - // [-length/2, length/2] - float zPos = ((float)z/(resZ - 1) - 0.5f)*length; - for (int x = 0; x < resX; x++) - { - // [-width/2, width/2] - float xPos = ((float)x/(resX - 1) - 0.5f)*width; - vertices[x + z*resX] = (Vector3){ xPos, 0.0f, zPos }; - } - } - - // Normals definition - Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3)); - for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up; - - // TexCoords definition - Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2)); - for (int v = 0; v < resZ; v++) - { - for (int u = 0; u < resX; u++) - { - texcoords[u + v*resX] = (Vector2){ (float)u/(resX - 1), (float)v/(resZ - 1) }; - } - } - - // Triangles definition (indices) - int numFaces = (resX - 1)*(resZ - 1); - int *triangles = (int *)RL_MALLOC(numFaces*6*sizeof(int)); - int t = 0; - for (int face = 0; face < numFaces; face++) - { - // Retrieve lower left corner from face ind - int i = face + face/(resX - 1); - - triangles[t++] = i + resX; - triangles[t++] = i + 1; - triangles[t++] = i; - - triangles[t++] = i + resX; - triangles[t++] = i + resX + 1; - triangles[t++] = i + 1; - } - - mesh.vertexCount = vertexCount; - mesh.triangleCount = numFaces*2; - mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); - mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float)); - mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); - mesh.indices = (unsigned short *)RL_MALLOC(mesh.triangleCount*3*sizeof(unsigned short)); - - // Mesh vertices position array - for (int i = 0; i < mesh.vertexCount; i++) - { - mesh.vertices[3*i] = vertices[i].x; - mesh.vertices[3*i + 1] = vertices[i].y; - mesh.vertices[3*i + 2] = vertices[i].z; - } - - // Mesh texcoords array - for (int i = 0; i < mesh.vertexCount; i++) - { - mesh.texcoords[2*i] = texcoords[i].x; - mesh.texcoords[2*i + 1] = texcoords[i].y; - } - - // Mesh normals array - for (int i = 0; i < mesh.vertexCount; i++) - { - mesh.normals[3*i] = normals[i].x; - mesh.normals[3*i + 1] = normals[i].y; - mesh.normals[3*i + 2] = normals[i].z; - } - - // Mesh indices array initialization - for (int i = 0; i < mesh.triangleCount*3; i++) mesh.indices[i] = triangles[i]; - - RL_FREE(vertices); - RL_FREE(normals); - RL_FREE(texcoords); - RL_FREE(triangles); - -#else // Use par_shapes library to generate plane mesh - - par_shapes_mesh *plane = par_shapes_create_plane(resX, resZ); // No normals/texcoords generated!!! - par_shapes_scale(plane, width, length, 1.0f); - par_shapes_rotate(plane, -PI/2.0f, (float[]){ 1, 0, 0 }); - par_shapes_translate(plane, -width/2, 0.0f, length/2); - - mesh.vertices = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float)); - mesh.texcoords = (float *)RL_MALLOC(plane->ntriangles*3*2*sizeof(float)); - mesh.normals = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float)); - - mesh.vertexCount = plane->ntriangles*3; - mesh.triangleCount = plane->ntriangles; - - for (int k = 0; k < mesh.vertexCount; k++) - { - mesh.vertices[k*3] = plane->points[plane->triangles[k]*3]; - mesh.vertices[k*3 + 1] = plane->points[plane->triangles[k]*3 + 1]; - mesh.vertices[k*3 + 2] = plane->points[plane->triangles[k]*3 + 2]; - - mesh.normals[k*3] = plane->normals[plane->triangles[k]*3]; - mesh.normals[k*3 + 1] = plane->normals[plane->triangles[k]*3 + 1]; - mesh.normals[k*3 + 2] = plane->normals[plane->triangles[k]*3 + 2]; - - mesh.texcoords[k*2] = plane->tcoords[plane->triangles[k]*2]; - mesh.texcoords[k*2 + 1] = plane->tcoords[plane->triangles[k]*2 + 1]; - } - - par_shapes_free_mesh(plane); -#endif - - // Upload vertex data to GPU (static mesh) - UploadMesh(&mesh, false); - - return mesh; -} - -// Generated cuboid mesh -Mesh GenMeshCube(float width, float height, float length) -{ - Mesh mesh = { 0 }; - -#define CUSTOM_MESH_GEN_CUBE -#if defined(CUSTOM_MESH_GEN_CUBE) - float vertices[] = { - -width/2, -height/2, length/2, - width/2, -height/2, length/2, - width/2, height/2, length/2, - -width/2, height/2, length/2, - -width/2, -height/2, -length/2, - -width/2, height/2, -length/2, - width/2, height/2, -length/2, - width/2, -height/2, -length/2, - -width/2, height/2, -length/2, - -width/2, height/2, length/2, - width/2, height/2, length/2, - width/2, height/2, -length/2, - -width/2, -height/2, -length/2, - width/2, -height/2, -length/2, - width/2, -height/2, length/2, - -width/2, -height/2, length/2, - width/2, -height/2, -length/2, - width/2, height/2, -length/2, - width/2, height/2, length/2, - width/2, -height/2, length/2, - -width/2, -height/2, -length/2, - -width/2, -height/2, length/2, - -width/2, height/2, length/2, - -width/2, height/2, -length/2 - }; - - float texcoords[] = { - 0.0f, 0.0f, - 1.0f, 0.0f, - 1.0f, 1.0f, - 0.0f, 1.0f, - 1.0f, 0.0f, - 1.0f, 1.0f, - 0.0f, 1.0f, - 0.0f, 0.0f, - 0.0f, 1.0f, - 0.0f, 0.0f, - 1.0f, 0.0f, - 1.0f, 1.0f, - 1.0f, 1.0f, - 0.0f, 1.0f, - 0.0f, 0.0f, - 1.0f, 0.0f, - 1.0f, 0.0f, - 1.0f, 1.0f, - 0.0f, 1.0f, - 0.0f, 0.0f, - 0.0f, 0.0f, - 1.0f, 0.0f, - 1.0f, 1.0f, - 0.0f, 1.0f - }; - - float normals[] = { - 0.0f, 0.0f, 1.0f, - 0.0f, 0.0f, 1.0f, - 0.0f, 0.0f, 1.0f, - 0.0f, 0.0f, 1.0f, - 0.0f, 0.0f,-1.0f, - 0.0f, 0.0f,-1.0f, - 0.0f, 0.0f,-1.0f, - 0.0f, 0.0f,-1.0f, - 0.0f, 1.0f, 0.0f, - 0.0f, 1.0f, 0.0f, - 0.0f, 1.0f, 0.0f, - 0.0f, 1.0f, 0.0f, - 0.0f,-1.0f, 0.0f, - 0.0f,-1.0f, 0.0f, - 0.0f,-1.0f, 0.0f, - 0.0f,-1.0f, 0.0f, - 1.0f, 0.0f, 0.0f, - 1.0f, 0.0f, 0.0f, - 1.0f, 0.0f, 0.0f, - 1.0f, 0.0f, 0.0f, - -1.0f, 0.0f, 0.0f, - -1.0f, 0.0f, 0.0f, - -1.0f, 0.0f, 0.0f, - -1.0f, 0.0f, 0.0f - }; - - mesh.vertices = (float *)RL_MALLOC(24*3*sizeof(float)); - memcpy(mesh.vertices, vertices, 24*3*sizeof(float)); - - mesh.texcoords = (float *)RL_MALLOC(24*2*sizeof(float)); - memcpy(mesh.texcoords, texcoords, 24*2*sizeof(float)); - - mesh.normals = (float *)RL_MALLOC(24*3*sizeof(float)); - memcpy(mesh.normals, normals, 24*3*sizeof(float)); - - mesh.indices = (unsigned short *)RL_MALLOC(36*sizeof(unsigned short)); - - int k = 0; - - // Indices can be initialized right now - for (int i = 0; i < 36; i += 6) - { - mesh.indices[i] = 4*k; - mesh.indices[i + 1] = 4*k + 1; - mesh.indices[i + 2] = 4*k + 2; - mesh.indices[i + 3] = 4*k; - mesh.indices[i + 4] = 4*k + 2; - mesh.indices[i + 5] = 4*k + 3; - - k++; - } - - mesh.vertexCount = 24; - mesh.triangleCount = 12; - -#else // Use par_shapes library to generate cube mesh -/* -// Platonic solids: -par_shapes_mesh* par_shapes_create_tetrahedron(); // 4 sides polyhedron (pyramid) -par_shapes_mesh* par_shapes_create_cube(); // 6 sides polyhedron (cube) -par_shapes_mesh* par_shapes_create_octahedron(); // 8 sides polyhedron (diamond) -par_shapes_mesh* par_shapes_create_dodecahedron(); // 12 sides polyhedron -par_shapes_mesh* par_shapes_create_icosahedron(); // 20 sides polyhedron -*/ - // Platonic solid generation: cube (6 sides) - // NOTE: No normals/texcoords generated by default - par_shapes_mesh *cube = par_shapes_create_cube(); - cube->tcoords = PAR_MALLOC(float, 2*cube->npoints); - for (int i = 0; i < 2*cube->npoints; i++) cube->tcoords[i] = 0.0f; - par_shapes_scale(cube, width, height, length); - par_shapes_translate(cube, -width/2, 0.0f, -length/2); - par_shapes_compute_normals(cube); - - mesh.vertices = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float)); - mesh.texcoords = (float *)RL_MALLOC(cube->ntriangles*3*2*sizeof(float)); - mesh.normals = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float)); - - mesh.vertexCount = cube->ntriangles*3; - mesh.triangleCount = cube->ntriangles; - - for (int k = 0; k < mesh.vertexCount; k++) - { - mesh.vertices[k*3] = cube->points[cube->triangles[k]*3]; - mesh.vertices[k*3 + 1] = cube->points[cube->triangles[k]*3 + 1]; - mesh.vertices[k*3 + 2] = cube->points[cube->triangles[k]*3 + 2]; - - mesh.normals[k*3] = cube->normals[cube->triangles[k]*3]; - mesh.normals[k*3 + 1] = cube->normals[cube->triangles[k]*3 + 1]; - mesh.normals[k*3 + 2] = cube->normals[cube->triangles[k]*3 + 2]; - - mesh.texcoords[k*2] = cube->tcoords[cube->triangles[k]*2]; - mesh.texcoords[k*2 + 1] = cube->tcoords[cube->triangles[k]*2 + 1]; - } - - par_shapes_free_mesh(cube); -#endif - - // Upload vertex data to GPU (static mesh) - UploadMesh(&mesh, false); - - return mesh; -} - -// Generate sphere mesh (standard sphere) -Mesh GenMeshSphere(float radius, int rings, int slices) -{ - Mesh mesh = { 0 }; - - if ((rings >= 3) && (slices >= 3)) - { - par_shapes_mesh *sphere = par_shapes_create_parametric_sphere(slices, rings); - par_shapes_scale(sphere, radius, radius, radius); - // NOTE: Soft normals are computed internally - - mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float)); - mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float)); - mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float)); - - mesh.vertexCount = sphere->ntriangles*3; - mesh.triangleCount = sphere->ntriangles; - - for (int k = 0; k < mesh.vertexCount; k++) - { - mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3]; - mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1]; - mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2]; - - mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3]; - mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1]; - mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2]; - - mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2]; - mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1]; - } - - par_shapes_free_mesh(sphere); - - // Upload vertex data to GPU (static mesh) - UploadMesh(&mesh, false); - } - else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: sphere"); - - return mesh; -} - -// Generate hemisphere mesh (half sphere, no bottom cap) -Mesh GenMeshHemiSphere(float radius, int rings, int slices) -{ - Mesh mesh = { 0 }; - - if ((rings >= 3) && (slices >= 3)) - { - if (radius < 0.0f) radius = 0.0f; - - par_shapes_mesh *sphere = par_shapes_create_hemisphere(slices, rings); - par_shapes_scale(sphere, radius, radius, radius); - // NOTE: Soft normals are computed internally - - mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float)); - mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float)); - mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float)); - - mesh.vertexCount = sphere->ntriangles*3; - mesh.triangleCount = sphere->ntriangles; - - for (int k = 0; k < mesh.vertexCount; k++) - { - mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3]; - mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1]; - mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2]; - - mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3]; - mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1]; - mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2]; - - mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2]; - mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1]; - } - - par_shapes_free_mesh(sphere); - - // Upload vertex data to GPU (static mesh) - UploadMesh(&mesh, false); - } - else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: hemisphere"); - - return mesh; -} - -// Generate cylinder mesh -Mesh GenMeshCylinder(float radius, float height, int slices) -{ - Mesh mesh = { 0 }; - - if (slices >= 3) - { - // Instance a cylinder that sits on the Z=0 plane using the given tessellation - // levels across the UV domain. Think of "slices" like a number of pizza - // slices, and "stacks" like a number of stacked rings - // Height and radius are both 1.0, but they can easily be changed with par_shapes_scale - par_shapes_mesh *cylinder = par_shapes_create_cylinder(slices, 8); - par_shapes_scale(cylinder, radius, radius, height); - par_shapes_rotate(cylinder, -PI/2.0f, (float[]){ 1, 0, 0 }); - - // Generate an orientable disk shape (top cap) - par_shapes_mesh *capTop = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, 1 }); - capTop->tcoords = PAR_MALLOC(float, 2*capTop->npoints); - for (int i = 0; i < 2*capTop->npoints; i++) capTop->tcoords[i] = 0.0f; - par_shapes_rotate(capTop, -PI/2.0f, (float[]){ 1, 0, 0 }); - par_shapes_rotate(capTop, 90*DEG2RAD, (float[]){ 0, 1, 0 }); - par_shapes_translate(capTop, 0, height, 0); - - // Generate an orientable disk shape (bottom cap) - par_shapes_mesh *capBottom = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, -1 }); - capBottom->tcoords = PAR_MALLOC(float, 2*capBottom->npoints); - for (int i = 0; i < 2*capBottom->npoints; i++) capBottom->tcoords[i] = 0.95f; - par_shapes_rotate(capBottom, PI/2.0f, (float[]){ 1, 0, 0 }); - par_shapes_rotate(capBottom, -90*DEG2RAD, (float[]){ 0, 1, 0 }); - - par_shapes_merge_and_free(cylinder, capTop); - par_shapes_merge_and_free(cylinder, capBottom); - - mesh.vertices = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float)); - mesh.texcoords = (float *)RL_MALLOC(cylinder->ntriangles*3*2*sizeof(float)); - mesh.normals = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float)); - - mesh.vertexCount = cylinder->ntriangles*3; - mesh.triangleCount = cylinder->ntriangles; - - for (int k = 0; k < mesh.vertexCount; k++) - { - mesh.vertices[k*3] = cylinder->points[cylinder->triangles[k]*3]; - mesh.vertices[k*3 + 1] = cylinder->points[cylinder->triangles[k]*3 + 1]; - mesh.vertices[k*3 + 2] = cylinder->points[cylinder->triangles[k]*3 + 2]; - - mesh.normals[k*3] = cylinder->normals[cylinder->triangles[k]*3]; - mesh.normals[k*3 + 1] = cylinder->normals[cylinder->triangles[k]*3 + 1]; - mesh.normals[k*3 + 2] = cylinder->normals[cylinder->triangles[k]*3 + 2]; - - mesh.texcoords[k*2] = cylinder->tcoords[cylinder->triangles[k]*2]; - mesh.texcoords[k*2 + 1] = cylinder->tcoords[cylinder->triangles[k]*2 + 1]; - } - - par_shapes_free_mesh(cylinder); - - // Upload vertex data to GPU (static mesh) - UploadMesh(&mesh, false); - } - else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: cylinder"); - - return mesh; -} - -// Generate cone/pyramid mesh -Mesh GenMeshCone(float radius, float height, int slices) -{ - Mesh mesh = { 0 }; - - if (slices >= 3) - { - // Instance a cone that sits on the Z=0 plane using the given tessellation - // levels across the UV domain. Think of "slices" like a number of pizza - // slices, and "stacks" like a number of stacked rings - // Height and radius are both 1.0, but they can easily be changed with par_shapes_scale - par_shapes_mesh *cone = par_shapes_create_cone(slices, 8); - par_shapes_scale(cone, radius, radius, height); - par_shapes_rotate(cone, -PI/2.0f, (float[]){ 1, 0, 0 }); - par_shapes_rotate(cone, PI/2.0f, (float[]){ 0, 1, 0 }); - - // Generate an orientable disk shape (bottom cap) - par_shapes_mesh *capBottom = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, -1 }); - capBottom->tcoords = PAR_MALLOC(float, 2*capBottom->npoints); - for (int i = 0; i < 2*capBottom->npoints; i++) capBottom->tcoords[i] = 0.95f; - par_shapes_rotate(capBottom, PI/2.0f, (float[]){ 1, 0, 0 }); - - par_shapes_merge_and_free(cone, capBottom); - - mesh.vertices = (float *)RL_MALLOC(cone->ntriangles*3*3*sizeof(float)); - mesh.texcoords = (float *)RL_MALLOC(cone->ntriangles*3*2*sizeof(float)); - mesh.normals = (float *)RL_MALLOC(cone->ntriangles*3*3*sizeof(float)); - - mesh.vertexCount = cone->ntriangles*3; - mesh.triangleCount = cone->ntriangles; - - for (int k = 0; k < mesh.vertexCount; k++) - { - mesh.vertices[k*3] = cone->points[cone->triangles[k]*3]; - mesh.vertices[k*3 + 1] = cone->points[cone->triangles[k]*3 + 1]; - mesh.vertices[k*3 + 2] = cone->points[cone->triangles[k]*3 + 2]; - - mesh.normals[k*3] = cone->normals[cone->triangles[k]*3]; - mesh.normals[k*3 + 1] = cone->normals[cone->triangles[k]*3 + 1]; - mesh.normals[k*3 + 2] = cone->normals[cone->triangles[k]*3 + 2]; - - mesh.texcoords[k*2] = cone->tcoords[cone->triangles[k]*2]; - mesh.texcoords[k*2 + 1] = cone->tcoords[cone->triangles[k]*2 + 1]; - } - - par_shapes_free_mesh(cone); - - // Upload vertex data to GPU (static mesh) - UploadMesh(&mesh, false); - } - else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: cone"); - - return mesh; -} - -// Generate torus mesh -Mesh GenMeshTorus(float radius, float size, int radSeg, int sides) -{ - Mesh mesh = { 0 }; - - if ((sides >= 3) && (radSeg >= 3)) - { - if (radius > 1.0f) radius = 1.0f; - else if (radius < 0.1f) radius = 0.1f; - - // Create a donut that sits on the Z=0 plane with the specified inner radius - // The outer radius can be controlled with par_shapes_scale - par_shapes_mesh *torus = par_shapes_create_torus(radSeg, sides, radius); - par_shapes_scale(torus, size/2, size/2, size/2); - - mesh.vertices = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float)); - mesh.texcoords = (float *)RL_MALLOC(torus->ntriangles*3*2*sizeof(float)); - mesh.normals = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float)); - - mesh.vertexCount = torus->ntriangles*3; - mesh.triangleCount = torus->ntriangles; - - for (int k = 0; k < mesh.vertexCount; k++) - { - mesh.vertices[k*3] = torus->points[torus->triangles[k]*3]; - mesh.vertices[k*3 + 1] = torus->points[torus->triangles[k]*3 + 1]; - mesh.vertices[k*3 + 2] = torus->points[torus->triangles[k]*3 + 2]; - - mesh.normals[k*3] = torus->normals[torus->triangles[k]*3]; - mesh.normals[k*3 + 1] = torus->normals[torus->triangles[k]*3 + 1]; - mesh.normals[k*3 + 2] = torus->normals[torus->triangles[k]*3 + 2]; - - mesh.texcoords[k*2] = torus->tcoords[torus->triangles[k]*2]; - mesh.texcoords[k*2 + 1] = torus->tcoords[torus->triangles[k]*2 + 1]; - } - - par_shapes_free_mesh(torus); - - // Upload vertex data to GPU (static mesh) - UploadMesh(&mesh, false); - } - else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: torus"); - - return mesh; -} - -// Generate trefoil knot mesh -Mesh GenMeshKnot(float radius, float size, int radSeg, int sides) -{ - Mesh mesh = { 0 }; - - if ((sides >= 3) && (radSeg >= 3)) - { - if (radius > 3.0f) radius = 3.0f; - else if (radius < 0.5f) radius = 0.5f; - - par_shapes_mesh *knot = par_shapes_create_trefoil_knot(radSeg, sides, radius); - par_shapes_scale(knot, size, size, size); - - mesh.vertices = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float)); - mesh.texcoords = (float *)RL_MALLOC(knot->ntriangles*3*2*sizeof(float)); - mesh.normals = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float)); - - mesh.vertexCount = knot->ntriangles*3; - mesh.triangleCount = knot->ntriangles; - - for (int k = 0; k < mesh.vertexCount; k++) - { - mesh.vertices[k*3] = knot->points[knot->triangles[k]*3]; - mesh.vertices[k*3 + 1] = knot->points[knot->triangles[k]*3 + 1]; - mesh.vertices[k*3 + 2] = knot->points[knot->triangles[k]*3 + 2]; - - mesh.normals[k*3] = knot->normals[knot->triangles[k]*3]; - mesh.normals[k*3 + 1] = knot->normals[knot->triangles[k]*3 + 1]; - mesh.normals[k*3 + 2] = knot->normals[knot->triangles[k]*3 + 2]; - - mesh.texcoords[k*2] = knot->tcoords[knot->triangles[k]*2]; - mesh.texcoords[k*2 + 1] = knot->tcoords[knot->triangles[k]*2 + 1]; - } - - par_shapes_free_mesh(knot); - - // Upload vertex data to GPU (static mesh) - UploadMesh(&mesh, false); - } - else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: knot"); - - return mesh; -} - -// Generate a mesh from heightmap -// NOTE: Vertex data is uploaded to GPU -Mesh GenMeshHeightmap(Image heightmap, Vector3 size) -{ - #define GRAY_VALUE(c) ((float)(c.r + c.g + c.b)/3.0f) - - Mesh mesh = { 0 }; - - int mapX = heightmap.width; - int mapZ = heightmap.height; - - Color *pixels = LoadImageColors(heightmap); - - // NOTE: One vertex per pixel - mesh.triangleCount = (mapX - 1)*(mapZ - 1)*2; // One quad every four pixels - - mesh.vertexCount = mesh.triangleCount*3; - - mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); - mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); - mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float)); - mesh.colors = NULL; - - int vCounter = 0; // Used to count vertices float by float - int tcCounter = 0; // Used to count texcoords float by float - int nCounter = 0; // Used to count normals float by float - - Vector3 scaleFactor = { size.x/(mapX - 1), size.y/255.0f, size.z/(mapZ - 1) }; - - Vector3 vA = { 0 }; - Vector3 vB = { 0 }; - Vector3 vC = { 0 }; - Vector3 vN = { 0 }; - - for (int z = 0; z < mapZ-1; z++) - { - for (int x = 0; x < mapX-1; x++) - { - // Fill vertices array with data - //---------------------------------------------------------- - - // one triangle - 3 vertex - mesh.vertices[vCounter] = (float)x*scaleFactor.x; - mesh.vertices[vCounter + 1] = GRAY_VALUE(pixels[x + z*mapX])*scaleFactor.y; - mesh.vertices[vCounter + 2] = (float)z*scaleFactor.z; - - mesh.vertices[vCounter + 3] = (float)x*scaleFactor.x; - mesh.vertices[vCounter + 4] = GRAY_VALUE(pixels[x + (z + 1)*mapX])*scaleFactor.y; - mesh.vertices[vCounter + 5] = (float)(z + 1)*scaleFactor.z; - - mesh.vertices[vCounter + 6] = (float)(x + 1)*scaleFactor.x; - mesh.vertices[vCounter + 7] = GRAY_VALUE(pixels[(x + 1) + z*mapX])*scaleFactor.y; - mesh.vertices[vCounter + 8] = (float)z*scaleFactor.z; - - // Another triangle - 3 vertex - mesh.vertices[vCounter + 9] = mesh.vertices[vCounter + 6]; - mesh.vertices[vCounter + 10] = mesh.vertices[vCounter + 7]; - mesh.vertices[vCounter + 11] = mesh.vertices[vCounter + 8]; - - mesh.vertices[vCounter + 12] = mesh.vertices[vCounter + 3]; - mesh.vertices[vCounter + 13] = mesh.vertices[vCounter + 4]; - mesh.vertices[vCounter + 14] = mesh.vertices[vCounter + 5]; - - mesh.vertices[vCounter + 15] = (float)(x + 1)*scaleFactor.x; - mesh.vertices[vCounter + 16] = GRAY_VALUE(pixels[(x + 1) + (z + 1)*mapX])*scaleFactor.y; - mesh.vertices[vCounter + 17] = (float)(z + 1)*scaleFactor.z; - vCounter += 18; // 6 vertex, 18 floats - - // Fill texcoords array with data - //-------------------------------------------------------------- - mesh.texcoords[tcCounter] = (float)x/(mapX - 1); - mesh.texcoords[tcCounter + 1] = (float)z/(mapZ - 1); - - mesh.texcoords[tcCounter + 2] = (float)x/(mapX - 1); - mesh.texcoords[tcCounter + 3] = (float)(z + 1)/(mapZ - 1); - - mesh.texcoords[tcCounter + 4] = (float)(x + 1)/(mapX - 1); - mesh.texcoords[tcCounter + 5] = (float)z/(mapZ - 1); - - mesh.texcoords[tcCounter + 6] = mesh.texcoords[tcCounter + 4]; - mesh.texcoords[tcCounter + 7] = mesh.texcoords[tcCounter + 5]; - - mesh.texcoords[tcCounter + 8] = mesh.texcoords[tcCounter + 2]; - mesh.texcoords[tcCounter + 9] = mesh.texcoords[tcCounter + 3]; - - mesh.texcoords[tcCounter + 10] = (float)(x + 1)/(mapX - 1); - mesh.texcoords[tcCounter + 11] = (float)(z + 1)/(mapZ - 1); - tcCounter += 12; // 6 texcoords, 12 floats - - // Fill normals array with data - //-------------------------------------------------------------- - for (int i = 0; i < 18; i += 9) - { - vA.x = mesh.vertices[nCounter + i]; - vA.y = mesh.vertices[nCounter + i + 1]; - vA.z = mesh.vertices[nCounter + i + 2]; - - vB.x = mesh.vertices[nCounter + i + 3]; - vB.y = mesh.vertices[nCounter + i + 4]; - vB.z = mesh.vertices[nCounter + i + 5]; - - vC.x = mesh.vertices[nCounter + i + 6]; - vC.y = mesh.vertices[nCounter + i + 7]; - vC.z = mesh.vertices[nCounter + i + 8]; - - vN = Vector3Normalize(Vector3CrossProduct(Vector3Subtract(vB, vA), Vector3Subtract(vC, vA))); - - mesh.normals[nCounter + i] = vN.x; - mesh.normals[nCounter + i + 1] = vN.y; - mesh.normals[nCounter + i + 2] = vN.z; - - mesh.normals[nCounter + i + 3] = vN.x; - mesh.normals[nCounter + i + 4] = vN.y; - mesh.normals[nCounter + i + 5] = vN.z; - - mesh.normals[nCounter + i + 6] = vN.x; - mesh.normals[nCounter + i + 7] = vN.y; - mesh.normals[nCounter + i + 8] = vN.z; - } - - nCounter += 18; // 6 vertex, 18 floats - } - } - - UnloadImageColors(pixels); // Unload pixels color data - - // Upload vertex data to GPU (static mesh) - UploadMesh(&mesh, false); - - return mesh; -} - -// Generate a cubes mesh from pixel data -// NOTE: Vertex data is uploaded to GPU -Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize) -{ - #define COLOR_EQUAL(col1, col2) ((col1.r == col2.r)&&(col1.g == col2.g)&&(col1.b == col2.b)&&(col1.a == col2.a)) - - Mesh mesh = { 0 }; - - Color *pixels = LoadImageColors(cubicmap); - - // NOTE: Max possible number of triangles numCubes*(12 triangles by cube) - int maxTriangles = cubicmap.width*cubicmap.height*12; - - int vCounter = 0; // Used to count vertices - int tcCounter = 0; // Used to count texcoords - int nCounter = 0; // Used to count normals - - float w = cubeSize.x; - float h = cubeSize.z; - float h2 = cubeSize.y; - - Vector3 *mapVertices = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3)); - Vector2 *mapTexcoords = (Vector2 *)RL_MALLOC(maxTriangles*3*sizeof(Vector2)); - Vector3 *mapNormals = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3)); - - // Define the 6 normals of the cube, we will combine them accordingly later... - Vector3 n1 = { 1.0f, 0.0f, 0.0f }; - Vector3 n2 = { -1.0f, 0.0f, 0.0f }; - Vector3 n3 = { 0.0f, 1.0f, 0.0f }; - Vector3 n4 = { 0.0f, -1.0f, 0.0f }; - Vector3 n5 = { 0.0f, 0.0f, -1.0f }; - Vector3 n6 = { 0.0f, 0.0f, 1.0f }; - - // NOTE: We use texture rectangles to define different textures for top-bottom-front-back-right-left (6) - typedef struct RectangleF { - float x; - float y; - float width; - float height; - } RectangleF; - - RectangleF rightTexUV = { 0.0f, 0.0f, 0.5f, 0.5f }; - RectangleF leftTexUV = { 0.5f, 0.0f, 0.5f, 0.5f }; - RectangleF frontTexUV = { 0.0f, 0.0f, 0.5f, 0.5f }; - RectangleF backTexUV = { 0.5f, 0.0f, 0.5f, 0.5f }; - RectangleF topTexUV = { 0.0f, 0.5f, 0.5f, 0.5f }; - RectangleF bottomTexUV = { 0.5f, 0.5f, 0.5f, 0.5f }; - - for (int z = 0; z < cubicmap.height; ++z) - { - for (int x = 0; x < cubicmap.width; ++x) - { - // Define the 8 vertex of the cube, we will combine them accordingly later... - Vector3 v1 = { w*(x - 0.5f), h2, h*(z - 0.5f) }; - Vector3 v2 = { w*(x - 0.5f), h2, h*(z + 0.5f) }; - Vector3 v3 = { w*(x + 0.5f), h2, h*(z + 0.5f) }; - Vector3 v4 = { w*(x + 0.5f), h2, h*(z - 0.5f) }; - Vector3 v5 = { w*(x + 0.5f), 0, h*(z - 0.5f) }; - Vector3 v6 = { w*(x - 0.5f), 0, h*(z - 0.5f) }; - Vector3 v7 = { w*(x - 0.5f), 0, h*(z + 0.5f) }; - Vector3 v8 = { w*(x + 0.5f), 0, h*(z + 0.5f) }; - - // We check pixel color to be WHITE -> draw full cube - if (COLOR_EQUAL(pixels[z*cubicmap.width + x], WHITE)) - { - // Define triangles and checking collateral cubes - //------------------------------------------------ - - // Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4) - // WARNING: Not required for a WHITE cubes, created to allow seeing the map from outside - mapVertices[vCounter] = v1; - mapVertices[vCounter + 1] = v2; - mapVertices[vCounter + 2] = v3; - mapVertices[vCounter + 3] = v1; - mapVertices[vCounter + 4] = v3; - mapVertices[vCounter + 5] = v4; - vCounter += 6; - - mapNormals[nCounter] = n3; - mapNormals[nCounter + 1] = n3; - mapNormals[nCounter + 2] = n3; - mapNormals[nCounter + 3] = n3; - mapNormals[nCounter + 4] = n3; - mapNormals[nCounter + 5] = n3; - nCounter += 6; - - mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y }; - mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height }; - mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height }; - mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y }; - mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height }; - mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y }; - tcCounter += 6; - - // Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8) - mapVertices[vCounter] = v6; - mapVertices[vCounter + 1] = v8; - mapVertices[vCounter + 2] = v7; - mapVertices[vCounter + 3] = v6; - mapVertices[vCounter + 4] = v5; - mapVertices[vCounter + 5] = v8; - vCounter += 6; - - mapNormals[nCounter] = n4; - mapNormals[nCounter + 1] = n4; - mapNormals[nCounter + 2] = n4; - mapNormals[nCounter + 3] = n4; - mapNormals[nCounter + 4] = n4; - mapNormals[nCounter + 5] = n4; - nCounter += 6; - - mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y }; - mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height }; - mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height }; - mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y }; - mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y }; - mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height }; - tcCounter += 6; - - // Checking cube on bottom of current cube - if (((z < cubicmap.height - 1) && COLOR_EQUAL(pixels[(z + 1)*cubicmap.width + x], BLACK)) || (z == cubicmap.height - 1)) - { - // Define front triangles (2 tris, 6 vertex) --> v2 v7 v3, v3 v7 v8 - // NOTE: Collateral occluded faces are not generated - mapVertices[vCounter] = v2; - mapVertices[vCounter + 1] = v7; - mapVertices[vCounter + 2] = v3; - mapVertices[vCounter + 3] = v3; - mapVertices[vCounter + 4] = v7; - mapVertices[vCounter + 5] = v8; - vCounter += 6; - - mapNormals[nCounter] = n6; - mapNormals[nCounter + 1] = n6; - mapNormals[nCounter + 2] = n6; - mapNormals[nCounter + 3] = n6; - mapNormals[nCounter + 4] = n6; - mapNormals[nCounter + 5] = n6; - nCounter += 6; - - mapTexcoords[tcCounter] = (Vector2){ frontTexUV.x, frontTexUV.y }; - mapTexcoords[tcCounter + 1] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height }; - mapTexcoords[tcCounter + 2] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y }; - mapTexcoords[tcCounter + 3] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y }; - mapTexcoords[tcCounter + 4] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height }; - mapTexcoords[tcCounter + 5] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y + frontTexUV.height }; - tcCounter += 6; - } - - // Checking cube on top of current cube - if (((z > 0) && COLOR_EQUAL(pixels[(z - 1)*cubicmap.width + x], BLACK)) || (z == 0)) - { - // Define back triangles (2 tris, 6 vertex) --> v1 v5 v6, v1 v4 v5 - // NOTE: Collateral occluded faces are not generated - mapVertices[vCounter] = v1; - mapVertices[vCounter + 1] = v5; - mapVertices[vCounter + 2] = v6; - mapVertices[vCounter + 3] = v1; - mapVertices[vCounter + 4] = v4; - mapVertices[vCounter + 5] = v5; - vCounter += 6; - - mapNormals[nCounter] = n5; - mapNormals[nCounter + 1] = n5; - mapNormals[nCounter + 2] = n5; - mapNormals[nCounter + 3] = n5; - mapNormals[nCounter + 4] = n5; - mapNormals[nCounter + 5] = n5; - nCounter += 6; - - mapTexcoords[tcCounter] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y }; - mapTexcoords[tcCounter + 1] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height }; - mapTexcoords[tcCounter + 2] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y + backTexUV.height }; - mapTexcoords[tcCounter + 3] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y }; - mapTexcoords[tcCounter + 4] = (Vector2){ backTexUV.x, backTexUV.y }; - mapTexcoords[tcCounter + 5] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height }; - tcCounter += 6; - } - - // Checking cube on right of current cube - if (((x < cubicmap.width - 1) && COLOR_EQUAL(pixels[z*cubicmap.width + (x + 1)], BLACK)) || (x == cubicmap.width - 1)) - { - // Define right triangles (2 tris, 6 vertex) --> v3 v8 v4, v4 v8 v5 - // NOTE: Collateral occluded faces are not generated - mapVertices[vCounter] = v3; - mapVertices[vCounter + 1] = v8; - mapVertices[vCounter + 2] = v4; - mapVertices[vCounter + 3] = v4; - mapVertices[vCounter + 4] = v8; - mapVertices[vCounter + 5] = v5; - vCounter += 6; - - mapNormals[nCounter] = n1; - mapNormals[nCounter + 1] = n1; - mapNormals[nCounter + 2] = n1; - mapNormals[nCounter + 3] = n1; - mapNormals[nCounter + 4] = n1; - mapNormals[nCounter + 5] = n1; - nCounter += 6; - - mapTexcoords[tcCounter] = (Vector2){ rightTexUV.x, rightTexUV.y }; - mapTexcoords[tcCounter + 1] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height }; - mapTexcoords[tcCounter + 2] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y }; - mapTexcoords[tcCounter + 3] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y }; - mapTexcoords[tcCounter + 4] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height }; - mapTexcoords[tcCounter + 5] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y + rightTexUV.height }; - tcCounter += 6; - } - - // Checking cube on left of current cube - if (((x > 0) && COLOR_EQUAL(pixels[z*cubicmap.width + (x - 1)], BLACK)) || (x == 0)) - { - // Define left triangles (2 tris, 6 vertex) --> v1 v7 v2, v1 v6 v7 - // NOTE: Collateral occluded faces are not generated - mapVertices[vCounter] = v1; - mapVertices[vCounter + 1] = v7; - mapVertices[vCounter + 2] = v2; - mapVertices[vCounter + 3] = v1; - mapVertices[vCounter + 4] = v6; - mapVertices[vCounter + 5] = v7; - vCounter += 6; - - mapNormals[nCounter] = n2; - mapNormals[nCounter + 1] = n2; - mapNormals[nCounter + 2] = n2; - mapNormals[nCounter + 3] = n2; - mapNormals[nCounter + 4] = n2; - mapNormals[nCounter + 5] = n2; - nCounter += 6; - - mapTexcoords[tcCounter] = (Vector2){ leftTexUV.x, leftTexUV.y }; - mapTexcoords[tcCounter + 1] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height }; - mapTexcoords[tcCounter + 2] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y }; - mapTexcoords[tcCounter + 3] = (Vector2){ leftTexUV.x, leftTexUV.y }; - mapTexcoords[tcCounter + 4] = (Vector2){ leftTexUV.x, leftTexUV.y + leftTexUV.height }; - mapTexcoords[tcCounter + 5] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height }; - tcCounter += 6; - } - } - // We check pixel color to be BLACK, we will only draw floor and roof - else if (COLOR_EQUAL(pixels[z*cubicmap.width + x], BLACK)) - { - // Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4) - mapVertices[vCounter] = v1; - mapVertices[vCounter + 1] = v3; - mapVertices[vCounter + 2] = v2; - mapVertices[vCounter + 3] = v1; - mapVertices[vCounter + 4] = v4; - mapVertices[vCounter + 5] = v3; - vCounter += 6; - - mapNormals[nCounter] = n4; - mapNormals[nCounter + 1] = n4; - mapNormals[nCounter + 2] = n4; - mapNormals[nCounter + 3] = n4; - mapNormals[nCounter + 4] = n4; - mapNormals[nCounter + 5] = n4; - nCounter += 6; - - mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y }; - mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height }; - mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height }; - mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y }; - mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y }; - mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height }; - tcCounter += 6; - - // Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8) - mapVertices[vCounter] = v6; - mapVertices[vCounter + 1] = v7; - mapVertices[vCounter + 2] = v8; - mapVertices[vCounter + 3] = v6; - mapVertices[vCounter + 4] = v8; - mapVertices[vCounter + 5] = v5; - vCounter += 6; - - mapNormals[nCounter] = n3; - mapNormals[nCounter + 1] = n3; - mapNormals[nCounter + 2] = n3; - mapNormals[nCounter + 3] = n3; - mapNormals[nCounter + 4] = n3; - mapNormals[nCounter + 5] = n3; - nCounter += 6; - - mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y }; - mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height }; - mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height }; - mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y }; - mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height }; - mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y }; - tcCounter += 6; - } - } - } - - // Move data from mapVertices temp arrays to vertices float array - mesh.vertexCount = vCounter; - mesh.triangleCount = vCounter/3; - - mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); - mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float)); - mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float)); - mesh.colors = NULL; - - int fCounter = 0; - - // Move vertices data - for (int i = 0; i < vCounter; i++) - { - mesh.vertices[fCounter] = mapVertices[i].x; - mesh.vertices[fCounter + 1] = mapVertices[i].y; - mesh.vertices[fCounter + 2] = mapVertices[i].z; - fCounter += 3; - } - - fCounter = 0; - - // Move normals data - for (int i = 0; i < nCounter; i++) - { - mesh.normals[fCounter] = mapNormals[i].x; - mesh.normals[fCounter + 1] = mapNormals[i].y; - mesh.normals[fCounter + 2] = mapNormals[i].z; - fCounter += 3; - } - - fCounter = 0; - - // Move texcoords data - for (int i = 0; i < tcCounter; i++) - { - mesh.texcoords[fCounter] = mapTexcoords[i].x; - mesh.texcoords[fCounter + 1] = mapTexcoords[i].y; - fCounter += 2; - } - - RL_FREE(mapVertices); - RL_FREE(mapNormals); - RL_FREE(mapTexcoords); - - UnloadImageColors(pixels); // Unload pixels color data - - // Upload vertex data to GPU (static mesh) - UploadMesh(&mesh, false); - - return mesh; -} -#endif // SUPPORT_MESH_GENERATION - -// Compute mesh bounding box limits -// NOTE: minVertex and maxVertex should be transformed by model transform matrix -BoundingBox GetMeshBoundingBox(Mesh mesh) -{ - // Get min and max vertex to construct bounds (AABB) - Vector3 minVertex = { 0 }; - Vector3 maxVertex = { 0 }; - - if (mesh.vertices != NULL) - { - minVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] }; - maxVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] }; - - for (int i = 1; i < mesh.vertexCount; i++) - { - minVertex = Vector3Min(minVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] }); - maxVertex = Vector3Max(maxVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] }); - } - } - - // Create the bounding box - BoundingBox box = { 0 }; - box.min = minVertex; - box.max = maxVertex; - - return box; -} - -// Compute mesh tangents -// NOTE: To calculate mesh tangents and binormals we need mesh vertex positions and texture coordinates -// Implementation based on: https://answers.unity.com/questions/7789/calculating-tangents-vector4.html -void GenMeshTangents(Mesh *mesh) -{ - if ((mesh->vertices == NULL) || (mesh->texcoords == NULL)) - { - TRACELOG(LOG_WARNING, "MESH: Tangents generation requires texcoord vertex attribute data"); - return; - } - - if (mesh->tangents == NULL) mesh->tangents = (float *)RL_MALLOC(mesh->vertexCount*4*sizeof(float)); - else - { - RL_FREE(mesh->tangents); - mesh->tangents = (float *)RL_MALLOC(mesh->vertexCount*4*sizeof(float)); - } - - Vector3 *tan1 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3)); - Vector3 *tan2 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3)); - - if (mesh->vertexCount % 3 != 0) - { - TRACELOG(LOG_WARNING, "MESH: vertexCount expected to be a multiple of 3. Expect uninitialized values."); - } - - for (int i = 0; i <= mesh->vertexCount - 3; i += 3) - { - // Get triangle vertices - Vector3 v1 = { mesh->vertices[(i + 0)*3 + 0], mesh->vertices[(i + 0)*3 + 1], mesh->vertices[(i + 0)*3 + 2] }; - Vector3 v2 = { mesh->vertices[(i + 1)*3 + 0], mesh->vertices[(i + 1)*3 + 1], mesh->vertices[(i + 1)*3 + 2] }; - Vector3 v3 = { mesh->vertices[(i + 2)*3 + 0], mesh->vertices[(i + 2)*3 + 1], mesh->vertices[(i + 2)*3 + 2] }; - - // Get triangle texcoords - Vector2 uv1 = { mesh->texcoords[(i + 0)*2 + 0], mesh->texcoords[(i + 0)*2 + 1] }; - Vector2 uv2 = { mesh->texcoords[(i + 1)*2 + 0], mesh->texcoords[(i + 1)*2 + 1] }; - Vector2 uv3 = { mesh->texcoords[(i + 2)*2 + 0], mesh->texcoords[(i + 2)*2 + 1] }; - - float x1 = v2.x - v1.x; - float y1 = v2.y - v1.y; - float z1 = v2.z - v1.z; - float x2 = v3.x - v1.x; - float y2 = v3.y - v1.y; - float z2 = v3.z - v1.z; - - float s1 = uv2.x - uv1.x; - float t1 = uv2.y - uv1.y; - float s2 = uv3.x - uv1.x; - float t2 = uv3.y - uv1.y; - - float div = s1*t2 - s2*t1; - float r = (div == 0.0f)? 0.0f : 1.0f/div; - - Vector3 sdir = { (t2*x1 - t1*x2)*r, (t2*y1 - t1*y2)*r, (t2*z1 - t1*z2)*r }; - Vector3 tdir = { (s1*x2 - s2*x1)*r, (s1*y2 - s2*y1)*r, (s1*z2 - s2*z1)*r }; - - tan1[i + 0] = sdir; - tan1[i + 1] = sdir; - tan1[i + 2] = sdir; - - tan2[i + 0] = tdir; - tan2[i + 1] = tdir; - tan2[i + 2] = tdir; - } - - // Compute tangents considering normals - for (int i = 0; i < mesh->vertexCount; i++) - { - Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] }; - Vector3 tangent = tan1[i]; - - // TODO: Review, not sure if tangent computation is right, just used reference proposed maths... -#if defined(COMPUTE_TANGENTS_METHOD_01) - Vector3 tmp = Vector3Subtract(tangent, Vector3Scale(normal, Vector3DotProduct(normal, tangent))); - tmp = Vector3Normalize(tmp); - mesh->tangents[i*4 + 0] = tmp.x; - mesh->tangents[i*4 + 1] = tmp.y; - mesh->tangents[i*4 + 2] = tmp.z; - mesh->tangents[i*4 + 3] = 1.0f; -#else - Vector3OrthoNormalize(&normal, &tangent); - mesh->tangents[i*4 + 0] = tangent.x; - mesh->tangents[i*4 + 1] = tangent.y; - mesh->tangents[i*4 + 2] = tangent.z; - mesh->tangents[i*4 + 3] = (Vector3DotProduct(Vector3CrossProduct(normal, tangent), tan2[i]) < 0.0f)? -1.0f : 1.0f; -#endif - } - - RL_FREE(tan1); - RL_FREE(tan2); - - if (mesh->vboId != NULL) - { - if (mesh->vboId[SHADER_LOC_VERTEX_TANGENT] != 0) - { - // Update existing vertex buffer - rlUpdateVertexBuffer(mesh->vboId[SHADER_LOC_VERTEX_TANGENT], mesh->tangents, mesh->vertexCount*4*sizeof(float), 0); - } - else - { - // Load a new tangent attributes buffer - mesh->vboId[SHADER_LOC_VERTEX_TANGENT] = rlLoadVertexBuffer(mesh->tangents, mesh->vertexCount*4*sizeof(float), false); - } - - rlEnableVertexArray(mesh->vaoId); - rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT, 4, RL_FLOAT, 0, 0, 0); - rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT); - rlDisableVertexArray(); - } - - TRACELOG(LOG_INFO, "MESH: Tangents data computed and uploaded for provided mesh"); -} - -// Draw a model (with texture if set) -void DrawModel(Model model, Vector3 position, float scale, Color tint) -{ - Vector3 vScale = { scale, scale, scale }; - Vector3 rotationAxis = { 0.0f, 1.0f, 0.0f }; - - DrawModelEx(model, position, rotationAxis, 0.0f, vScale, tint); -} - -// Draw a model with extended parameters -void DrawModelEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint) -{ - // Calculate transformation matrix from function parameters - // Get transform matrix (rotation -> scale -> translation) - Matrix matScale = MatrixScale(scale.x, scale.y, scale.z); - Matrix matRotation = MatrixRotate(rotationAxis, rotationAngle*DEG2RAD); - Matrix matTranslation = MatrixTranslate(position.x, position.y, position.z); - - Matrix matTransform = MatrixMultiply(MatrixMultiply(matScale, matRotation), matTranslation); - - // Combine model transformation matrix (model.transform) with matrix generated by function parameters (matTransform) - model.transform = MatrixMultiply(model.transform, matTransform); - - for (int i = 0; i < model.meshCount; i++) - { - Color color = model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color; - - Color colorTint = WHITE; - colorTint.r = (unsigned char)(((int)color.r*(int)tint.r)/255); - colorTint.g = (unsigned char)(((int)color.g*(int)tint.g)/255); - colorTint.b = (unsigned char)(((int)color.b*(int)tint.b)/255); - colorTint.a = (unsigned char)(((int)color.a*(int)tint.a)/255); - - model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color = colorTint; - DrawMesh(model.meshes[i], model.materials[model.meshMaterial[i]], model.transform); - model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color = color; - } -} - -// Draw a model wires (with texture if set) -void DrawModelWires(Model model, Vector3 position, float scale, Color tint) -{ - rlEnableWireMode(); - - DrawModel(model, position, scale, tint); - - rlDisableWireMode(); -} - -// Draw a model wires (with texture if set) with extended parameters -void DrawModelWiresEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint) -{ - rlEnableWireMode(); - - DrawModelEx(model, position, rotationAxis, rotationAngle, scale, tint); - - rlDisableWireMode(); -} - -// Draw a model points -void DrawModelPoints(Model model, Vector3 position, float scale, Color tint) -{ - rlEnablePointMode(); - rlDisableBackfaceCulling(); - - DrawModel(model, position, scale, tint); - - rlEnableBackfaceCulling(); - rlDisableWireMode(); -} - -// Draw a model points -void DrawModelPointsEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint) -{ - rlEnablePointMode(); - rlDisableBackfaceCulling(); - - DrawModelEx(model, position, rotationAxis, rotationAngle, scale, tint); - - rlEnableBackfaceCulling(); - rlDisableWireMode(); -} - -// Draw a billboard -void DrawBillboard(Camera camera, Texture2D texture, Vector3 position, float scale, Color tint) -{ - Rectangle source = { 0.0f, 0.0f, (float)texture.width, (float)texture.height }; - - DrawBillboardRec(camera, texture, source, position, (Vector2) { scale*fabsf((float)source.width/source.height), scale }, tint); -} - -// Draw a billboard (part of a texture defined by a rectangle) -void DrawBillboardRec(Camera camera, Texture2D texture, Rectangle source, Vector3 position, Vector2 size, Color tint) -{ - // NOTE: Billboard locked on axis-Y - Vector3 up = { 0.0f, 1.0f, 0.0f }; - - DrawBillboardPro(camera, texture, source, position, up, size, Vector2Scale(size, 0.5), 0.0f, tint); -} - -// Draw a billboard with additional parameters -void DrawBillboardPro(Camera camera, Texture2D texture, Rectangle source, Vector3 position, Vector3 up, Vector2 size, Vector2 origin, float rotation, Color tint) -{ - // Compute the up vector and the right vector - Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up); - Vector3 right = { matView.m0, matView.m4, matView.m8 }; - right = Vector3Scale(right, size.x); - up = Vector3Scale(up, size.y); - - // Flip the content of the billboard while maintaining the counterclockwise edge rendering order - if (size.x < 0.0f) - { - source.x += size.x; - source.width *= -1.0; - right = Vector3Negate(right); - origin.x *= -1.0f; - } - if (size.y < 0.0f) - { - source.y += size.y; - source.height *= -1.0; - up = Vector3Negate(up); - origin.y *= -1.0f; - } - - // Draw the texture region described by source on the following rectangle in 3D space: - // - // size.x <--. - // 3 ^---------------------------+ 2 \ rotation - // | | / - // | | - // | origin.x position | - // up |.............. | size.y - // | . | - // | . origin.y | - // | . | - // 0 +---------------------------> 1 - // right - Vector3 forward; - if (rotation != 0.0) forward = Vector3CrossProduct(right, up); - - Vector3 origin3D = Vector3Add(Vector3Scale(Vector3Normalize(right), origin.x), Vector3Scale(Vector3Normalize(up), origin.y)); - - Vector3 points[4]; - points[0] = Vector3Zero(); - points[1] = right; - points[2] = Vector3Add(up, right); - points[3] = up; - - for (int i = 0; i < 4; i++) - { - points[i] = Vector3Subtract(points[i], origin3D); - if (rotation != 0.0) points[i] = Vector3RotateByAxisAngle(points[i], forward, rotation * DEG2RAD); - points[i] = Vector3Add(points[i], position); - } - - Vector2 texcoords[4]; - texcoords[0] = (Vector2) { (float)source.x/texture.width, (float)(source.y + source.height)/texture.height }; - texcoords[1] = (Vector2) { (float)(source.x + source.width)/texture.width, (float)(source.y + source.height)/texture.height }; - texcoords[2] = (Vector2) { (float)(source.x + source.width)/texture.width, (float)source.y/texture.height }; - texcoords[3] = (Vector2) { (float)source.x/texture.width, (float)source.y/texture.height }; - - rlSetTexture(texture.id); - rlBegin(RL_QUADS); - - rlColor4ub(tint.r, tint.g, tint.b, tint.a); - for (int i = 0; i < 4; i++) - { - rlTexCoord2f(texcoords[i].x, texcoords[i].y); - rlVertex3f(points[i].x, points[i].y, points[i].z); - } - - rlEnd(); - rlSetTexture(0); -} - -// Draw a bounding box with wires -void DrawBoundingBox(BoundingBox box, Color color) -{ - Vector3 size = { 0 }; - - size.x = fabsf(box.max.x - box.min.x); - size.y = fabsf(box.max.y - box.min.y); - size.z = fabsf(box.max.z - box.min.z); - - Vector3 center = { box.min.x + size.x/2.0f, box.min.y + size.y/2.0f, box.min.z + size.z/2.0f }; - - DrawCubeWires(center, size.x, size.y, size.z, color); -} - -// Check collision between two spheres -bool CheckCollisionSpheres(Vector3 center1, float radius1, Vector3 center2, float radius2) -{ - bool collision = false; - - // Simple way to check for collision, just checking distance between two points - // Unfortunately, sqrtf() is a costly operation, so we avoid it with following solution - /* - float dx = center1.x - center2.x; // X distance between centers - float dy = center1.y - center2.y; // Y distance between centers - float dz = center1.z - center2.z; // Z distance between centers - - float distance = sqrtf(dx*dx + dy*dy + dz*dz); // Distance between centers - - if (distance <= (radius1 + radius2)) collision = true; - */ - - // Check for distances squared to avoid sqrtf() - if (Vector3DotProduct(Vector3Subtract(center2, center1), Vector3Subtract(center2, center1)) <= (radius1 + radius2)*(radius1 + radius2)) collision = true; - - return collision; -} - -// Check collision between two boxes -// NOTE: Boxes are defined by two points minimum and maximum -bool CheckCollisionBoxes(BoundingBox box1, BoundingBox box2) -{ - bool collision = true; - - if ((box1.max.x >= box2.min.x) && (box1.min.x <= box2.max.x)) - { - if ((box1.max.y < box2.min.y) || (box1.min.y > box2.max.y)) collision = false; - if ((box1.max.z < box2.min.z) || (box1.min.z > box2.max.z)) collision = false; - } - else collision = false; - - return collision; -} - -// Check collision between box and sphere -bool CheckCollisionBoxSphere(BoundingBox box, Vector3 center, float radius) -{ - bool collision = false; - - float dmin = 0; - - if (center.x < box.min.x) dmin += powf(center.x - box.min.x, 2); - else if (center.x > box.max.x) dmin += powf(center.x - box.max.x, 2); - - if (center.y < box.min.y) dmin += powf(center.y - box.min.y, 2); - else if (center.y > box.max.y) dmin += powf(center.y - box.max.y, 2); - - if (center.z < box.min.z) dmin += powf(center.z - box.min.z, 2); - else if (center.z > box.max.z) dmin += powf(center.z - box.max.z, 2); - - if (dmin <= (radius*radius)) collision = true; - - return collision; -} - -// Get collision info between ray and sphere -RayCollision GetRayCollisionSphere(Ray ray, Vector3 center, float radius) -{ - RayCollision collision = { 0 }; - - Vector3 raySpherePos = Vector3Subtract(center, ray.position); - float vector = Vector3DotProduct(raySpherePos, ray.direction); - float distance = Vector3Length(raySpherePos); - float d = radius*radius - (distance*distance - vector*vector); - - collision.hit = d >= 0.0f; - - // Check if ray origin is inside the sphere to calculate the correct collision point - if (distance < radius) - { - collision.distance = vector + sqrtf(d); - - // Calculate collision point - collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, collision.distance)); - - // Calculate collision normal (pointing outwards) - collision.normal = Vector3Negate(Vector3Normalize(Vector3Subtract(collision.point, center))); - } - else - { - collision.distance = vector - sqrtf(d); - - // Calculate collision point - collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, collision.distance)); - - // Calculate collision normal (pointing inwards) - collision.normal = Vector3Normalize(Vector3Subtract(collision.point, center)); - } - - return collision; -} - -// Get collision info between ray and box -RayCollision GetRayCollisionBox(Ray ray, BoundingBox box) -{ - RayCollision collision = { 0 }; - - // Note: If ray.position is inside the box, the distance is negative (as if the ray was reversed) - // Reversing ray.direction will give use the correct result - bool insideBox = (ray.position.x > box.min.x) && (ray.position.x < box.max.x) && - (ray.position.y > box.min.y) && (ray.position.y < box.max.y) && - (ray.position.z > box.min.z) && (ray.position.z < box.max.z); - - if (insideBox) ray.direction = Vector3Negate(ray.direction); - - float t[11] = { 0 }; - - t[8] = 1.0f/ray.direction.x; - t[9] = 1.0f/ray.direction.y; - t[10] = 1.0f/ray.direction.z; - - t[0] = (box.min.x - ray.position.x)*t[8]; - t[1] = (box.max.x - ray.position.x)*t[8]; - t[2] = (box.min.y - ray.position.y)*t[9]; - t[3] = (box.max.y - ray.position.y)*t[9]; - t[4] = (box.min.z - ray.position.z)*t[10]; - t[5] = (box.max.z - ray.position.z)*t[10]; - t[6] = (float)fmax(fmax(fmin(t[0], t[1]), fmin(t[2], t[3])), fmin(t[4], t[5])); - t[7] = (float)fmin(fmin(fmax(t[0], t[1]), fmax(t[2], t[3])), fmax(t[4], t[5])); - - collision.hit = !((t[7] < 0) || (t[6] > t[7])); - collision.distance = t[6]; - collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, collision.distance)); - - // Get box center point - collision.normal = Vector3Lerp(box.min, box.max, 0.5f); - // Get vector center point->hit point - collision.normal = Vector3Subtract(collision.point, collision.normal); - // Scale vector to unit cube - // NOTE: We use an additional .01 to fix numerical errors - collision.normal = Vector3Scale(collision.normal, 2.01f); - collision.normal = Vector3Divide(collision.normal, Vector3Subtract(box.max, box.min)); - // The relevant elements of the vector are now slightly larger than 1.0f (or smaller than -1.0f) - // and the others are somewhere between -1.0 and 1.0 casting to int is exactly our wanted normal! - collision.normal.x = (float)((int)collision.normal.x); - collision.normal.y = (float)((int)collision.normal.y); - collision.normal.z = (float)((int)collision.normal.z); - - collision.normal = Vector3Normalize(collision.normal); - - if (insideBox) - { - // Reset ray.direction - ray.direction = Vector3Negate(ray.direction); - // Fix result - collision.distance *= -1.0f; - collision.normal = Vector3Negate(collision.normal); - } - - return collision; -} - -// Get collision info between ray and mesh -RayCollision GetRayCollisionMesh(Ray ray, Mesh mesh, Matrix transform) -{ - RayCollision collision = { 0 }; - - // Check if mesh vertex data on CPU for testing - if (mesh.vertices != NULL) - { - int triangleCount = mesh.triangleCount; - - // Test against all triangles in mesh - for (int i = 0; i < triangleCount; i++) - { - Vector3 a, b, c; - Vector3* vertdata = (Vector3*)mesh.vertices; - - if (mesh.indices) - { - a = vertdata[mesh.indices[i*3 + 0]]; - b = vertdata[mesh.indices[i*3 + 1]]; - c = vertdata[mesh.indices[i*3 + 2]]; - } - else - { - a = vertdata[i*3 + 0]; - b = vertdata[i*3 + 1]; - c = vertdata[i*3 + 2]; - } - - a = Vector3Transform(a, transform); - b = Vector3Transform(b, transform); - c = Vector3Transform(c, transform); - - RayCollision triHitInfo = GetRayCollisionTriangle(ray, a, b, c); - - if (triHitInfo.hit) - { - // Save the closest hit triangle - if ((!collision.hit) || (collision.distance > triHitInfo.distance)) collision = triHitInfo; - } - } - } - - return collision; -} - -// Get collision info between ray and triangle -// NOTE: The points are expected to be in counter-clockwise winding -// NOTE: Based on https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm -RayCollision GetRayCollisionTriangle(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3) -{ - #define EPSILON 0.000001f // A small number - - RayCollision collision = { 0 }; - Vector3 edge1 = { 0 }; - Vector3 edge2 = { 0 }; - Vector3 p, q, tv; - float det, invDet, u, v, t; - - // Find vectors for two edges sharing V1 - edge1 = Vector3Subtract(p2, p1); - edge2 = Vector3Subtract(p3, p1); - - // Begin calculating determinant - also used to calculate u parameter - p = Vector3CrossProduct(ray.direction, edge2); - - // If determinant is near zero, ray lies in plane of triangle or ray is parallel to plane of triangle - det = Vector3DotProduct(edge1, p); - - // Avoid culling! - if ((det > -EPSILON) && (det < EPSILON)) return collision; - - invDet = 1.0f/det; - - // Calculate distance from V1 to ray origin - tv = Vector3Subtract(ray.position, p1); - - // Calculate u parameter and test bound - u = Vector3DotProduct(tv, p)*invDet; - - // The intersection lies outside the triangle - if ((u < 0.0f) || (u > 1.0f)) return collision; - - // Prepare to test v parameter - q = Vector3CrossProduct(tv, edge1); - - // Calculate V parameter and test bound - v = Vector3DotProduct(ray.direction, q)*invDet; - - // The intersection lies outside the triangle - if ((v < 0.0f) || ((u + v) > 1.0f)) return collision; - - t = Vector3DotProduct(edge2, q)*invDet; - - if (t > EPSILON) - { - // Ray hit, get hit point and normal - collision.hit = true; - collision.distance = t; - collision.normal = Vector3Normalize(Vector3CrossProduct(edge1, edge2)); - collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, t)); - } - - return collision; -} - -// Get collision info between ray and quad -// NOTE: The points are expected to be in counter-clockwise winding -RayCollision GetRayCollisionQuad(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3, Vector3 p4) -{ - RayCollision collision = { 0 }; - - collision = GetRayCollisionTriangle(ray, p1, p2, p4); - - if (!collision.hit) collision = GetRayCollisionTriangle(ray, p2, p3, p4); - - return collision; -} - -//---------------------------------------------------------------------------------- -// Module specific Functions Definition -//---------------------------------------------------------------------------------- -#if defined(SUPPORT_FILEFORMAT_IQM) || defined(SUPPORT_FILEFORMAT_GLTF) -// Build pose from parent joints -// NOTE: Required for animations loading (required by IQM and GLTF) -static void BuildPoseFromParentJoints(BoneInfo *bones, int boneCount, Transform *transforms) -{ - for (int i = 0; i < boneCount; i++) - { - if (bones[i].parent >= 0) - { - if (bones[i].parent > i) - { - TRACELOG(LOG_WARNING, "Assumes bones are toplogically sorted, but bone %d has parent %d. Skipping.", i, bones[i].parent); - continue; - } - transforms[i].rotation = QuaternionMultiply(transforms[bones[i].parent].rotation, transforms[i].rotation); - transforms[i].translation = Vector3RotateByQuaternion(transforms[i].translation, transforms[bones[i].parent].rotation); - transforms[i].translation = Vector3Add(transforms[i].translation, transforms[bones[i].parent].translation); - transforms[i].scale = Vector3Multiply(transforms[i].scale, transforms[bones[i].parent].scale); - } - } -} -#endif - -#if defined(SUPPORT_FILEFORMAT_OBJ) -// Load OBJ mesh data -// -// Keep the following information in mind when reading this -// - A mesh is created for every material present in the obj file -// - the model.meshCount is therefore the materialCount returned from tinyobj -// - the mesh is automatically triangulated by tinyobj -static Model LoadOBJ(const char *fileName) -{ - tinyobj_attrib_t objAttributes = { 0 }; - tinyobj_shape_t* objShapes = NULL; - unsigned int objShapeCount = 0; - - tinyobj_material_t* objMaterials = NULL; - unsigned int objMaterialCount = 0; - - Model model = { 0 }; - model.transform = MatrixIdentity(); - - char* fileText = LoadFileText(fileName); - - if (fileText == NULL) - { - TRACELOG(LOG_ERROR, "MODEL Unable to read obj file %s", fileName); - return model; - } - - char currentDir[1024] = { 0 }; - strcpy(currentDir, GetWorkingDirectory()); // Save current working directory - const char* workingDir = GetDirectoryPath(fileName); // Switch to OBJ directory for material path correctness - if (CHDIR(workingDir) != 0) - { - TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", workingDir); - } - - unsigned int dataSize = (unsigned int)strlen(fileText); - - unsigned int flags = TINYOBJ_FLAG_TRIANGULATE; - int ret = tinyobj_parse_obj(&objAttributes, &objShapes, &objShapeCount, &objMaterials, &objMaterialCount, fileText, dataSize, flags); - - if (ret != TINYOBJ_SUCCESS) - { - TRACELOG(LOG_ERROR, "MODEL Unable to read obj data %s", fileName); - return model; - } - - UnloadFileText(fileText); - - unsigned int faceVertIndex = 0; - unsigned int nextShape = 1; - int lastMaterial = -1; - unsigned int meshIndex = 0; - - // count meshes - unsigned int nextShapeEnd = objAttributes.num_face_num_verts; - - // see how many verts till the next shape - - if (objShapeCount > 1) nextShapeEnd = objShapes[nextShape].face_offset; - - // walk all the faces - for (unsigned int faceId = 0; faceId < objAttributes.num_faces; faceId++) - { - if (faceVertIndex >= nextShapeEnd) - { - // try to find the last vert in the next shape - nextShape++; - if (nextShape < objShapeCount) nextShapeEnd = objShapes[nextShape].face_offset; - else nextShapeEnd = objAttributes.num_face_num_verts; // this is actually the total number of face verts in the file, not faces - meshIndex++; - } - else if (lastMaterial != -1 && objAttributes.material_ids[faceId] != lastMaterial) - { - meshIndex++;// if this is a new material, we need to allocate a new mesh - } - - lastMaterial = objAttributes.material_ids[faceId]; - faceVertIndex += objAttributes.face_num_verts[faceId]; - } - - // allocate the base meshes and materials - model.meshCount = meshIndex + 1; - model.meshes = (Mesh*)MemAlloc(sizeof(Mesh) * model.meshCount); - - if (objMaterialCount > 0) - { - model.materialCount = objMaterialCount; - model.materials = (Material*)MemAlloc(sizeof(Material) * objMaterialCount); - } - else // we must allocate at least one material - { - model.materialCount = 1; - model.materials = (Material*)MemAlloc(sizeof(Material) * 1); - } - - model.meshMaterial = (int*)MemAlloc(sizeof(int) * model.meshCount); - - // see how many verts are in each mesh - unsigned int* localMeshVertexCounts = (unsigned int*)MemAlloc(sizeof(unsigned int) * model.meshCount); - - faceVertIndex = 0; - nextShapeEnd = objAttributes.num_face_num_verts; - lastMaterial = -1; - meshIndex = 0; - unsigned int localMeshVertexCount = 0; - - nextShape = 1; - if (objShapeCount > 1) - nextShapeEnd = objShapes[nextShape].face_offset; - - // walk all the faces - for (unsigned int faceId = 0; faceId < objAttributes.num_faces; faceId++) - { - bool newMesh = false; // do we need a new mesh? - if (faceVertIndex >= nextShapeEnd) - { - // try to find the last vert in the next shape - nextShape++; - if (nextShape < objShapeCount) nextShapeEnd = objShapes[nextShape].face_offset; - else nextShapeEnd = objAttributes.num_face_num_verts; // this is actually the total number of face verts in the file, not faces - - newMesh = true; - } - else if (lastMaterial != -1 && objAttributes.material_ids[faceId] != lastMaterial) - { - newMesh = true; - } - - lastMaterial = objAttributes.material_ids[faceId]; - - if (newMesh) - { - localMeshVertexCounts[meshIndex] = localMeshVertexCount; - - localMeshVertexCount = 0; - meshIndex++; - } - - faceVertIndex += objAttributes.face_num_verts[faceId]; - localMeshVertexCount += objAttributes.face_num_verts[faceId]; - } - localMeshVertexCounts[meshIndex] = localMeshVertexCount; - - for (int i = 0; i < model.meshCount; i++) - { - // allocate the buffers for each mesh - unsigned int vertexCount = localMeshVertexCounts[i]; - - model.meshes[i].vertexCount = vertexCount; - model.meshes[i].triangleCount = vertexCount / 3; - - model.meshes[i].vertices = (float*)MemAlloc(sizeof(float) * vertexCount * 3); - model.meshes[i].normals = (float*)MemAlloc(sizeof(float) * vertexCount * 3); - model.meshes[i].texcoords = (float*)MemAlloc(sizeof(float) * vertexCount * 2); - model.meshes[i].colors = (unsigned char*)MemAlloc(sizeof(unsigned char) * vertexCount * 4); - } - - MemFree(localMeshVertexCounts); - localMeshVertexCounts = NULL; - - // fill meshes - faceVertIndex = 0; - - nextShapeEnd = objAttributes.num_face_num_verts; - - // see how many verts till the next shape - nextShape = 1; - if (objShapeCount > 1) nextShapeEnd = objShapes[nextShape].face_offset; - lastMaterial = -1; - meshIndex = 0; - localMeshVertexCount = 0; - - // walk all the faces - for (unsigned int faceId = 0; faceId < objAttributes.num_faces; faceId++) - { - bool newMesh = false; // do we need a new mesh? - if (faceVertIndex >= nextShapeEnd) - { - // try to find the last vert in the next shape - nextShape++; - if (nextShape < objShapeCount) nextShapeEnd = objShapes[nextShape].face_offset; - else nextShapeEnd = objAttributes.num_face_num_verts; // this is actually the total number of face verts in the file, not faces - newMesh = true; - } - // if this is a new material, we need to allocate a new mesh - if (lastMaterial != -1 && objAttributes.material_ids[faceId] != lastMaterial) newMesh = true; - lastMaterial = objAttributes.material_ids[faceId];; - - if (newMesh) - { - localMeshVertexCount = 0; - meshIndex++; - } - - int matId = 0; - if (lastMaterial >= 0 && lastMaterial < (int)objMaterialCount) - matId = lastMaterial; - - model.meshMaterial[meshIndex] = matId; - - for (int f = 0; f < objAttributes.face_num_verts[faceId]; f++) - { - int vertIndex = objAttributes.faces[faceVertIndex].v_idx; - int normalIndex = objAttributes.faces[faceVertIndex].vn_idx; - int texcordIndex = objAttributes.faces[faceVertIndex].vt_idx; - - for (int i = 0; i < 3; i++) - model.meshes[meshIndex].vertices[localMeshVertexCount * 3 + i] = objAttributes.vertices[vertIndex * 3 + i]; - - for (int i = 0; i < 3; i++) - model.meshes[meshIndex].normals[localMeshVertexCount * 3 + i] = objAttributes.normals[normalIndex * 3 + i]; - - for (int i = 0; i < 2; i++) - model.meshes[meshIndex].texcoords[localMeshVertexCount * 2 + i] = objAttributes.texcoords[texcordIndex * 2 + i]; - - model.meshes[meshIndex].texcoords[localMeshVertexCount * 2 + 1] = 1.0f - model.meshes[meshIndex].texcoords[localMeshVertexCount * 2 + 1]; - - for (int i = 0; i < 4; i++) - model.meshes[meshIndex].colors[localMeshVertexCount * 4 + i] = 255; - - faceVertIndex++; - localMeshVertexCount++; - } - } - - if (objMaterialCount > 0) ProcessMaterialsOBJ(model.materials, objMaterials, objMaterialCount); - else model.materials[0] = LoadMaterialDefault(); // Set default material for the mesh - - tinyobj_attrib_free(&objAttributes); - tinyobj_shapes_free(objShapes, objShapeCount); - tinyobj_materials_free(objMaterials, objMaterialCount); - - for (int i = 0; i < model.meshCount; i++) - UploadMesh(model.meshes + i, true); - - // Restore current working directory - if (CHDIR(currentDir) != 0) - { - TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", currentDir); - } - - return model; -} -#endif - -#if defined(SUPPORT_FILEFORMAT_IQM) -// Load IQM mesh data -static Model LoadIQM(const char *fileName) -{ - #define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number - #define IQM_VERSION 2 // only IQM version 2 supported - - #define BONE_NAME_LENGTH 32 // BoneInfo name string length - #define MESH_NAME_LENGTH 32 // Mesh name string length - #define MATERIAL_NAME_LENGTH 32 // Material name string length - - int dataSize = 0; - unsigned char *fileData = LoadFileData(fileName, &dataSize); - unsigned char *fileDataPtr = fileData; - - // IQM file structs - //----------------------------------------------------------------------------------- - typedef struct IQMHeader { - char magic[16]; - unsigned int version; - unsigned int dataSize; - unsigned int flags; - unsigned int num_text, ofs_text; - unsigned int num_meshes, ofs_meshes; - unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays; - unsigned int num_triangles, ofs_triangles, ofs_adjacency; - unsigned int num_joints, ofs_joints; - unsigned int num_poses, ofs_poses; - unsigned int num_anims, ofs_anims; - unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds; - unsigned int num_comment, ofs_comment; - unsigned int num_extensions, ofs_extensions; - } IQMHeader; - - typedef struct IQMMesh { - unsigned int name; - unsigned int material; - unsigned int first_vertex, num_vertexes; - unsigned int first_triangle, num_triangles; - } IQMMesh; - - typedef struct IQMTriangle { - unsigned int vertex[3]; - } IQMTriangle; - - typedef struct IQMJoint { - unsigned int name; - int parent; - float translate[3], rotate[4], scale[3]; - } IQMJoint; - - typedef struct IQMVertexArray { - unsigned int type; - unsigned int flags; - unsigned int format; - unsigned int size; - unsigned int offset; - } IQMVertexArray; - - // NOTE: Below IQM structures are not used but listed for reference - /* - typedef struct IQMAdjacency { - unsigned int triangle[3]; - } IQMAdjacency; - - typedef struct IQMPose { - int parent; - unsigned int mask; - float channeloffset[10]; - float channelscale[10]; - } IQMPose; - - typedef struct IQMAnim { - unsigned int name; - unsigned int first_frame, num_frames; - float framerate; - unsigned int flags; - } IQMAnim; - - typedef struct IQMBounds { - float bbmin[3], bbmax[3]; - float xyradius, radius; - } IQMBounds; - */ - //----------------------------------------------------------------------------------- - - // IQM vertex data types - enum { - IQM_POSITION = 0, - IQM_TEXCOORD = 1, - IQM_NORMAL = 2, - IQM_TANGENT = 3, // NOTE: Tangents unused by default - IQM_BLENDINDEXES = 4, - IQM_BLENDWEIGHTS = 5, - IQM_COLOR = 6, - IQM_CUSTOM = 0x10 // NOTE: Custom vertex values unused by default - }; - - Model model = { 0 }; - - IQMMesh *imesh = NULL; - IQMTriangle *tri = NULL; - IQMVertexArray *va = NULL; - IQMJoint *ijoint = NULL; - - float *vertex = NULL; - float *normal = NULL; - float *text = NULL; - char *blendi = NULL; - unsigned char *blendw = NULL; - unsigned char *color = NULL; - - // In case file can not be read, return an empty model - if (fileDataPtr == NULL) return model; - - const char *basePath = GetDirectoryPath(fileName); - - // Read IQM header - IQMHeader *iqmHeader = (IQMHeader *)fileDataPtr; - - if (memcmp(iqmHeader->magic, IQM_MAGIC, sizeof(IQM_MAGIC)) != 0) - { - TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file is not a valid model", fileName); - return model; - } - - if (iqmHeader->version != IQM_VERSION) - { - TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file version not supported (%i)", fileName, iqmHeader->version); - return model; - } - - //fileDataPtr += sizeof(IQMHeader); // Move file data pointer - - // Meshes data processing - imesh = RL_MALLOC(iqmHeader->num_meshes*sizeof(IQMMesh)); - //fseek(iqmFile, iqmHeader->ofs_meshes, SEEK_SET); - //fread(imesh, sizeof(IQMMesh)*iqmHeader->num_meshes, 1, iqmFile); - memcpy(imesh, fileDataPtr + iqmHeader->ofs_meshes, iqmHeader->num_meshes*sizeof(IQMMesh)); - - model.meshCount = iqmHeader->num_meshes; - model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh)); - - model.materialCount = model.meshCount; - model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material)); - model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int)); - - char name[MESH_NAME_LENGTH] = { 0 }; - char material[MATERIAL_NAME_LENGTH] = { 0 }; - - for (int i = 0; i < model.meshCount; i++) - { - //fseek(iqmFile, iqmHeader->ofs_text + imesh[i].name, SEEK_SET); - //fread(name, sizeof(char), MESH_NAME_LENGTH, iqmFile); - memcpy(name, fileDataPtr + iqmHeader->ofs_text + imesh[i].name, MESH_NAME_LENGTH*sizeof(char)); - - //fseek(iqmFile, iqmHeader->ofs_text + imesh[i].material, SEEK_SET); - //fread(material, sizeof(char), MATERIAL_NAME_LENGTH, iqmFile); - memcpy(material, fileDataPtr + iqmHeader->ofs_text + imesh[i].material, MATERIAL_NAME_LENGTH*sizeof(char)); - - model.materials[i] = LoadMaterialDefault(); - model.materials[i].maps[MATERIAL_MAP_ALBEDO].texture = LoadTexture(TextFormat("%s/%s", basePath, material)); - - model.meshMaterial[i] = i; - - TRACELOG(LOG_DEBUG, "MODEL: [%s] mesh name (%s), material (%s)", fileName, name, material); - - model.meshes[i].vertexCount = imesh[i].num_vertexes; - - model.meshes[i].vertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex positions - model.meshes[i].normals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex normals - model.meshes[i].texcoords = RL_CALLOC(model.meshes[i].vertexCount*2, sizeof(float)); // Default vertex texcoords - - model.meshes[i].boneIds = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(unsigned char)); // Up-to 4 bones supported! - model.meshes[i].boneWeights = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(float)); // Up-to 4 bones supported! - - model.meshes[i].triangleCount = imesh[i].num_triangles; - model.meshes[i].indices = RL_CALLOC(model.meshes[i].triangleCount*3, sizeof(unsigned short)); - - // Animated vertex data, what we actually process for rendering - // NOTE: Animated vertex should be re-uploaded to GPU (if not using GPU skinning) - model.meshes[i].animVertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); - model.meshes[i].animNormals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); - } - - // Triangles data processing - tri = RL_MALLOC(iqmHeader->num_triangles*sizeof(IQMTriangle)); - //fseek(iqmFile, iqmHeader->ofs_triangles, SEEK_SET); - //fread(tri, sizeof(IQMTriangle), iqmHeader->num_triangles, iqmFile); - memcpy(tri, fileDataPtr + iqmHeader->ofs_triangles, iqmHeader->num_triangles*sizeof(IQMTriangle)); - - for (int m = 0; m < model.meshCount; m++) - { - int tcounter = 0; - - for (unsigned int i = imesh[m].first_triangle; i < (imesh[m].first_triangle + imesh[m].num_triangles); i++) - { - // IQM triangles indexes are stored in counter-clockwise, but raylib processes the index in linear order, - // expecting they point to the counter-clockwise vertex triangle, so we need to reverse triangle indexes - // NOTE: raylib renders vertex data in counter-clockwise order (standard convention) by default - model.meshes[m].indices[tcounter + 2] = tri[i].vertex[0] - imesh[m].first_vertex; - model.meshes[m].indices[tcounter + 1] = tri[i].vertex[1] - imesh[m].first_vertex; - model.meshes[m].indices[tcounter] = tri[i].vertex[2] - imesh[m].first_vertex; - tcounter += 3; - } - } - - // Vertex arrays data processing - va = RL_MALLOC(iqmHeader->num_vertexarrays*sizeof(IQMVertexArray)); - //fseek(iqmFile, iqmHeader->ofs_vertexarrays, SEEK_SET); - //fread(va, sizeof(IQMVertexArray), iqmHeader->num_vertexarrays, iqmFile); - memcpy(va, fileDataPtr + iqmHeader->ofs_vertexarrays, iqmHeader->num_vertexarrays*sizeof(IQMVertexArray)); - - for (unsigned int i = 0; i < iqmHeader->num_vertexarrays; i++) - { - switch (va[i].type) - { - case IQM_POSITION: - { - vertex = RL_MALLOC(iqmHeader->num_vertexes*3*sizeof(float)); - //fseek(iqmFile, va[i].offset, SEEK_SET); - //fread(vertex, iqmHeader->num_vertexes*3*sizeof(float), 1, iqmFile); - memcpy(vertex, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*3*sizeof(float)); - - for (unsigned int m = 0; m < iqmHeader->num_meshes; m++) - { - int vCounter = 0; - for (unsigned int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++) - { - model.meshes[m].vertices[vCounter] = vertex[i]; - model.meshes[m].animVertices[vCounter] = vertex[i]; - vCounter++; - } - } - } break; - case IQM_NORMAL: - { - normal = RL_MALLOC(iqmHeader->num_vertexes*3*sizeof(float)); - //fseek(iqmFile, va[i].offset, SEEK_SET); - //fread(normal, iqmHeader->num_vertexes*3*sizeof(float), 1, iqmFile); - memcpy(normal, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*3*sizeof(float)); - - for (unsigned int m = 0; m < iqmHeader->num_meshes; m++) - { - int vCounter = 0; - for (unsigned int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++) - { - model.meshes[m].normals[vCounter] = normal[i]; - model.meshes[m].animNormals[vCounter] = normal[i]; - vCounter++; - } - } - } break; - case IQM_TEXCOORD: - { - text = RL_MALLOC(iqmHeader->num_vertexes*2*sizeof(float)); - //fseek(iqmFile, va[i].offset, SEEK_SET); - //fread(text, iqmHeader->num_vertexes*2*sizeof(float), 1, iqmFile); - memcpy(text, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*2*sizeof(float)); - - for (unsigned int m = 0; m < iqmHeader->num_meshes; m++) - { - int vCounter = 0; - for (unsigned int i = imesh[m].first_vertex*2; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*2; i++) - { - model.meshes[m].texcoords[vCounter] = text[i]; - vCounter++; - } - } - } break; - case IQM_BLENDINDEXES: - { - blendi = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(char)); - //fseek(iqmFile, va[i].offset, SEEK_SET); - //fread(blendi, iqmHeader->num_vertexes*4*sizeof(char), 1, iqmFile); - memcpy(blendi, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(char)); - - for (unsigned int m = 0; m < iqmHeader->num_meshes; m++) - { - int boneCounter = 0; - for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++) - { - model.meshes[m].boneIds[boneCounter] = blendi[i]; - boneCounter++; - } - } - } break; - case IQM_BLENDWEIGHTS: - { - blendw = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(unsigned char)); - //fseek(iqmFile, va[i].offset, SEEK_SET); - //fread(blendw, iqmHeader->num_vertexes*4*sizeof(unsigned char), 1, iqmFile); - memcpy(blendw, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(unsigned char)); - - for (unsigned int m = 0; m < iqmHeader->num_meshes; m++) - { - int boneCounter = 0; - for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++) - { - model.meshes[m].boneWeights[boneCounter] = blendw[i]/255.0f; - boneCounter++; - } - } - } break; - case IQM_COLOR: - { - color = RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(unsigned char)); - //fseek(iqmFile, va[i].offset, SEEK_SET); - //fread(blendw, iqmHeader->num_vertexes*4*sizeof(unsigned char), 1, iqmFile); - memcpy(color, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(unsigned char)); - - for (unsigned int m = 0; m < iqmHeader->num_meshes; m++) - { - model.meshes[m].colors = RL_CALLOC(model.meshes[m].vertexCount*4, sizeof(unsigned char)); - - int vCounter = 0; - for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++) - { - model.meshes[m].colors[vCounter] = color[i]; - vCounter++; - } - } - } break; - } - } - - // Bones (joints) data processing - ijoint = RL_MALLOC(iqmHeader->num_joints*sizeof(IQMJoint)); - //fseek(iqmFile, iqmHeader->ofs_joints, SEEK_SET); - //fread(ijoint, sizeof(IQMJoint), iqmHeader->num_joints, iqmFile); - memcpy(ijoint, fileDataPtr + iqmHeader->ofs_joints, iqmHeader->num_joints*sizeof(IQMJoint)); - - model.boneCount = iqmHeader->num_joints; - model.bones = RL_MALLOC(iqmHeader->num_joints*sizeof(BoneInfo)); - model.bindPose = RL_MALLOC(iqmHeader->num_joints*sizeof(Transform)); - - for (unsigned int i = 0; i < iqmHeader->num_joints; i++) - { - // Bones - model.bones[i].parent = ijoint[i].parent; - //fseek(iqmFile, iqmHeader->ofs_text + ijoint[i].name, SEEK_SET); - //fread(model.bones[i].name, sizeof(char), BONE_NAME_LENGTH, iqmFile); - memcpy(model.bones[i].name, fileDataPtr + iqmHeader->ofs_text + ijoint[i].name, BONE_NAME_LENGTH*sizeof(char)); - - // Bind pose (base pose) - model.bindPose[i].translation.x = ijoint[i].translate[0]; - model.bindPose[i].translation.y = ijoint[i].translate[1]; - model.bindPose[i].translation.z = ijoint[i].translate[2]; - - model.bindPose[i].rotation.x = ijoint[i].rotate[0]; - model.bindPose[i].rotation.y = ijoint[i].rotate[1]; - model.bindPose[i].rotation.z = ijoint[i].rotate[2]; - model.bindPose[i].rotation.w = ijoint[i].rotate[3]; - - model.bindPose[i].scale.x = ijoint[i].scale[0]; - model.bindPose[i].scale.y = ijoint[i].scale[1]; - model.bindPose[i].scale.z = ijoint[i].scale[2]; - } - - BuildPoseFromParentJoints(model.bones, model.boneCount, model.bindPose); - - UnloadFileData(fileData); - - RL_FREE(imesh); - RL_FREE(tri); - RL_FREE(va); - RL_FREE(vertex); - RL_FREE(normal); - RL_FREE(text); - RL_FREE(blendi); - RL_FREE(blendw); - RL_FREE(ijoint); - RL_FREE(color); - - return model; -} - -// Load IQM animation data -static ModelAnimation *LoadModelAnimationsIQM(const char *fileName, int *animCount) -{ - #define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number - #define IQM_VERSION 2 // only IQM version 2 supported - - int dataSize = 0; - unsigned char *fileData = LoadFileData(fileName, &dataSize); - unsigned char *fileDataPtr = fileData; - - typedef struct IQMHeader { - char magic[16]; - unsigned int version; - unsigned int dataSize; - unsigned int flags; - unsigned int num_text, ofs_text; - unsigned int num_meshes, ofs_meshes; - unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays; - unsigned int num_triangles, ofs_triangles, ofs_adjacency; - unsigned int num_joints, ofs_joints; - unsigned int num_poses, ofs_poses; - unsigned int num_anims, ofs_anims; - unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds; - unsigned int num_comment, ofs_comment; - unsigned int num_extensions, ofs_extensions; - } IQMHeader; - - typedef struct IQMJoint { - unsigned int name; - int parent; - float translate[3], rotate[4], scale[3]; - } IQMJoint; - - typedef struct IQMPose { - int parent; - unsigned int mask; - float channeloffset[10]; - float channelscale[10]; - } IQMPose; - - typedef struct IQMAnim { - unsigned int name; - unsigned int first_frame, num_frames; - float framerate; - unsigned int flags; - } IQMAnim; - - // In case file can not be read, return an empty model - if (fileDataPtr == NULL) return NULL; - - // Read IQM header - IQMHeader *iqmHeader = (IQMHeader *)fileDataPtr; - - if (memcmp(iqmHeader->magic, IQM_MAGIC, sizeof(IQM_MAGIC)) != 0) - { - TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file is not a valid model", fileName); - return NULL; - } - - if (iqmHeader->version != IQM_VERSION) - { - TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file version not supported (%i)", fileName, iqmHeader->version); - return NULL; - } - - // Get bones data - IQMPose *poses = RL_MALLOC(iqmHeader->num_poses*sizeof(IQMPose)); - //fseek(iqmFile, iqmHeader->ofs_poses, SEEK_SET); - //fread(poses, sizeof(IQMPose), iqmHeader->num_poses, iqmFile); - memcpy(poses, fileDataPtr + iqmHeader->ofs_poses, iqmHeader->num_poses*sizeof(IQMPose)); - - // Get animations data - *animCount = iqmHeader->num_anims; - IQMAnim *anim = RL_MALLOC(iqmHeader->num_anims*sizeof(IQMAnim)); - //fseek(iqmFile, iqmHeader->ofs_anims, SEEK_SET); - //fread(anim, sizeof(IQMAnim), iqmHeader->num_anims, iqmFile); - memcpy(anim, fileDataPtr + iqmHeader->ofs_anims, iqmHeader->num_anims*sizeof(IQMAnim)); - - ModelAnimation *animations = RL_MALLOC(iqmHeader->num_anims*sizeof(ModelAnimation)); - - // frameposes - unsigned short *framedata = RL_MALLOC(iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short)); - //fseek(iqmFile, iqmHeader->ofs_frames, SEEK_SET); - //fread(framedata, sizeof(unsigned short), iqmHeader->num_frames*iqmHeader->num_framechannels, iqmFile); - memcpy(framedata, fileDataPtr + iqmHeader->ofs_frames, iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short)); - - // joints - IQMJoint *joints = RL_MALLOC(iqmHeader->num_joints*sizeof(IQMJoint)); - memcpy(joints, fileDataPtr + iqmHeader->ofs_joints, iqmHeader->num_joints*sizeof(IQMJoint)); - - for (unsigned int a = 0; a < iqmHeader->num_anims; a++) - { - animations[a].frameCount = anim[a].num_frames; - animations[a].boneCount = iqmHeader->num_poses; - animations[a].bones = RL_MALLOC(iqmHeader->num_poses*sizeof(BoneInfo)); - animations[a].framePoses = RL_MALLOC(anim[a].num_frames*sizeof(Transform *)); - memcpy(animations[a].name, fileDataPtr + iqmHeader->ofs_text + anim[a].name, 32); // I don't like this 32 here - TraceLog(LOG_INFO, "IQM Anim %s", animations[a].name); - // animations[a].framerate = anim.framerate; // TODO: Use animation framerate data? - - for (unsigned int j = 0; j < iqmHeader->num_poses; j++) - { - // If animations and skeleton are in the same file, copy bone names to anim - if (iqmHeader->num_joints > 0) - memcpy(animations[a].bones[j].name, fileDataPtr + iqmHeader->ofs_text + joints[j].name, BONE_NAME_LENGTH*sizeof(char)); - else - strcpy(animations[a].bones[j].name, "ANIMJOINTNAME"); // default bone name otherwise - animations[a].bones[j].parent = poses[j].parent; - } - - for (unsigned int j = 0; j < anim[a].num_frames; j++) animations[a].framePoses[j] = RL_MALLOC(iqmHeader->num_poses*sizeof(Transform)); - - int dcounter = anim[a].first_frame*iqmHeader->num_framechannels; - - for (unsigned int frame = 0; frame < anim[a].num_frames; frame++) - { - for (unsigned int i = 0; i < iqmHeader->num_poses; i++) - { - animations[a].framePoses[frame][i].translation.x = poses[i].channeloffset[0]; - - if (poses[i].mask & 0x01) - { - animations[a].framePoses[frame][i].translation.x += framedata[dcounter]*poses[i].channelscale[0]; - dcounter++; - } - - animations[a].framePoses[frame][i].translation.y = poses[i].channeloffset[1]; - - if (poses[i].mask & 0x02) - { - animations[a].framePoses[frame][i].translation.y += framedata[dcounter]*poses[i].channelscale[1]; - dcounter++; - } - - animations[a].framePoses[frame][i].translation.z = poses[i].channeloffset[2]; - - if (poses[i].mask & 0x04) - { - animations[a].framePoses[frame][i].translation.z += framedata[dcounter]*poses[i].channelscale[2]; - dcounter++; - } - - animations[a].framePoses[frame][i].rotation.x = poses[i].channeloffset[3]; - - if (poses[i].mask & 0x08) - { - animations[a].framePoses[frame][i].rotation.x += framedata[dcounter]*poses[i].channelscale[3]; - dcounter++; - } - - animations[a].framePoses[frame][i].rotation.y = poses[i].channeloffset[4]; - - if (poses[i].mask & 0x10) - { - animations[a].framePoses[frame][i].rotation.y += framedata[dcounter]*poses[i].channelscale[4]; - dcounter++; - } - - animations[a].framePoses[frame][i].rotation.z = poses[i].channeloffset[5]; - - if (poses[i].mask & 0x20) - { - animations[a].framePoses[frame][i].rotation.z += framedata[dcounter]*poses[i].channelscale[5]; - dcounter++; - } - - animations[a].framePoses[frame][i].rotation.w = poses[i].channeloffset[6]; - - if (poses[i].mask & 0x40) - { - animations[a].framePoses[frame][i].rotation.w += framedata[dcounter]*poses[i].channelscale[6]; - dcounter++; - } - - animations[a].framePoses[frame][i].scale.x = poses[i].channeloffset[7]; - - if (poses[i].mask & 0x80) - { - animations[a].framePoses[frame][i].scale.x += framedata[dcounter]*poses[i].channelscale[7]; - dcounter++; - } - - animations[a].framePoses[frame][i].scale.y = poses[i].channeloffset[8]; - - if (poses[i].mask & 0x100) - { - animations[a].framePoses[frame][i].scale.y += framedata[dcounter]*poses[i].channelscale[8]; - dcounter++; - } - - animations[a].framePoses[frame][i].scale.z = poses[i].channeloffset[9]; - - if (poses[i].mask & 0x200) - { - animations[a].framePoses[frame][i].scale.z += framedata[dcounter]*poses[i].channelscale[9]; - dcounter++; - } - - animations[a].framePoses[frame][i].rotation = QuaternionNormalize(animations[a].framePoses[frame][i].rotation); - } - } - - // Build frameposes - for (unsigned int frame = 0; frame < anim[a].num_frames; frame++) - { - for (int i = 0; i < animations[a].boneCount; i++) - { - if (animations[a].bones[i].parent >= 0) - { - animations[a].framePoses[frame][i].rotation = QuaternionMultiply(animations[a].framePoses[frame][animations[a].bones[i].parent].rotation, animations[a].framePoses[frame][i].rotation); - animations[a].framePoses[frame][i].translation = Vector3RotateByQuaternion(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].rotation); - animations[a].framePoses[frame][i].translation = Vector3Add(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].translation); - animations[a].framePoses[frame][i].scale = Vector3Multiply(animations[a].framePoses[frame][i].scale, animations[a].framePoses[frame][animations[a].bones[i].parent].scale); - } - } - } - } - - UnloadFileData(fileData); - - RL_FREE(joints); - RL_FREE(framedata); - RL_FREE(poses); - RL_FREE(anim); - - return animations; -} - -#endif - -#if defined(SUPPORT_FILEFORMAT_GLTF) -// Load file data callback for cgltf -static cgltf_result LoadFileGLTFCallback(const struct cgltf_memory_options *memoryOptions, const struct cgltf_file_options *fileOptions, const char *path, cgltf_size *size, void **data) -{ - int filesize; - unsigned char *filedata = LoadFileData(path, &filesize); - - if (filedata == NULL) return cgltf_result_io_error; - - *size = filesize; - *data = filedata; - - return cgltf_result_success; -} - -// Release file data callback for cgltf -static void ReleaseFileGLTFCallback(const struct cgltf_memory_options *memoryOptions, const struct cgltf_file_options *fileOptions, void *data) -{ - UnloadFileData(data); -} - -// Load image from different glTF provided methods (uri, path, buffer_view) -static Image LoadImageFromCgltfImage(cgltf_image *cgltfImage, const char *texPath) -{ - Image image = { 0 }; - - if (cgltfImage->uri != NULL) // Check if image data is provided as an uri (base64 or path) - { - if ((strlen(cgltfImage->uri) > 5) && - (cgltfImage->uri[0] == 'd') && - (cgltfImage->uri[1] == 'a') && - (cgltfImage->uri[2] == 't') && - (cgltfImage->uri[3] == 'a') && - (cgltfImage->uri[4] == ':')) // Check if image is provided as base64 text data - { - // Data URI Format: data:;base64, - - // Find the comma - int i = 0; - while ((cgltfImage->uri[i] != ',') && (cgltfImage->uri[i] != 0)) i++; - - if (cgltfImage->uri[i] == 0) TRACELOG(LOG_WARNING, "IMAGE: glTF data URI is not a valid image"); - else - { - int base64Size = (int)strlen(cgltfImage->uri + i + 1); - while (cgltfImage->uri[i + base64Size] == '=') base64Size--; // Ignore optional paddings - int numberOfEncodedBits = base64Size*6 - (base64Size*6) % 8 ; // Encoded bits minus extra bits, so it becomes a multiple of 8 bits - int outSize = numberOfEncodedBits/8 ; // Actual encoded bytes - void *data = NULL; - - cgltf_options options = { 0 }; - options.file.read = LoadFileGLTFCallback; - options.file.release = ReleaseFileGLTFCallback; - cgltf_result result = cgltf_load_buffer_base64(&options, outSize, cgltfImage->uri + i + 1, &data); - - if (result == cgltf_result_success) - { - image = LoadImageFromMemory(".png", (unsigned char *)data, outSize); - RL_FREE(data); - } - } - } - else // Check if image is provided as image path - { - image = LoadImage(TextFormat("%s/%s", texPath, cgltfImage->uri)); - } - } - else if (cgltfImage->buffer_view->buffer->data != NULL) // Check if image is provided as data buffer - { - unsigned char *data = RL_MALLOC(cgltfImage->buffer_view->size); - int offset = (int)cgltfImage->buffer_view->offset; - int stride = (int)cgltfImage->buffer_view->stride? (int)cgltfImage->buffer_view->stride : 1; - - // Copy buffer data to memory for loading - for (unsigned int i = 0; i < cgltfImage->buffer_view->size; i++) - { - data[i] = ((unsigned char *)cgltfImage->buffer_view->buffer->data)[offset]; - offset += stride; - } - - // Check mime_type for image: (cgltfImage->mime_type == "image/png") - // NOTE: Detected that some models define mime_type as "image\\/png" - if ((strcmp(cgltfImage->mime_type, "image\\/png") == 0) || - (strcmp(cgltfImage->mime_type, "image/png") == 0)) image = LoadImageFromMemory(".png", data, (int)cgltfImage->buffer_view->size); - else if ((strcmp(cgltfImage->mime_type, "image\\/jpeg") == 0) || - (strcmp(cgltfImage->mime_type, "image/jpeg") == 0)) image = LoadImageFromMemory(".jpg", data, (int)cgltfImage->buffer_view->size); - else TRACELOG(LOG_WARNING, "MODEL: glTF image data MIME type not recognized", TextFormat("%s/%s", texPath, cgltfImage->uri)); - - RL_FREE(data); - } - - return image; -} - -// Load bone info from GLTF skin data -static BoneInfo *LoadBoneInfoGLTF(cgltf_skin skin, int *boneCount) -{ - *boneCount = (int)skin.joints_count; - BoneInfo *bones = RL_MALLOC(skin.joints_count*sizeof(BoneInfo)); - - for (unsigned int i = 0; i < skin.joints_count; i++) - { - cgltf_node node = *skin.joints[i]; - if (node.name != NULL) - { - strncpy(bones[i].name, node.name, sizeof(bones[i].name)); - bones[i].name[sizeof(bones[i].name) - 1] = '\0'; - } - - // Find parent bone index - int parentIndex = -1; - - for (unsigned int j = 0; j < skin.joints_count; j++) - { - if (skin.joints[j] == node.parent) - { - parentIndex = (int)j; - break; - } - } - - bones[i].parent = parentIndex; - } - - return bones; -} - -// Load glTF file into model struct, .gltf and .glb supported -static Model LoadGLTF(const char *fileName) -{ - /********************************************************************************************* - - Function implemented by Wilhem Barbier(@wbrbr), with modifications by Tyler Bezera(@gamerfiend) - Transform handling implemented by Paul Melis (@paulmelis). - Reviewed by Ramon Santamaria (@raysan5) - - FEATURES: - - Supports .gltf and .glb files - - Supports embedded (base64) or external textures - - Supports PBR metallic/roughness flow, loads material textures, values and colors - PBR specular/glossiness flow and extended texture flows not supported - - Supports multiple meshes per model (every primitives is loaded as a separate mesh) - - Supports basic animations - - Transforms, including parent-child relations, are applied on the mesh data, but the - hierarchy is not kept (as it can't be represented). - - Mesh instances in the glTF file (i.e. same mesh linked from multiple nodes) - are turned into separate raylib Meshes. - - RESTRICTIONS: - - Only triangle meshes supported - - Vertex attribute types and formats supported: - > Vertices (position): vec3: float - > Normals: vec3: float - > Texcoords: vec2: float - > Colors: vec4: u8, u16, f32 (normalized) - > Indices: u16, u32 (truncated to u16) - - Scenes defined in the glTF file are ignored. All nodes in the file - are used. - - ***********************************************************************************************/ - - // Macro to simplify attributes loading code - #define LOAD_ATTRIBUTE(accesor, numComp, dataType, dstPtr) \ - { \ - int n = 0; \ - dataType *buffer = (dataType *)accesor->buffer_view->buffer->data + accesor->buffer_view->offset/sizeof(dataType) + accesor->offset/sizeof(dataType); \ - for (unsigned int k = 0; k < accesor->count; k++) \ - {\ - for (int l = 0; l < numComp; l++) \ - {\ - dstPtr[numComp*k + l] = buffer[n + l];\ - }\ - n += (int)(accesor->stride/sizeof(dataType));\ - }\ - } - - Model model = { 0 }; - - // glTF file loading - int dataSize = 0; - unsigned char *fileData = LoadFileData(fileName, &dataSize); - - if (fileData == NULL) return model; - - // glTF data loading - cgltf_options options = { 0 }; - options.file.read = LoadFileGLTFCallback; - options.file.release = ReleaseFileGLTFCallback; - cgltf_data *data = NULL; - cgltf_result result = cgltf_parse(&options, fileData, dataSize, &data); - - if (result == cgltf_result_success) - { - if (data->file_type == cgltf_file_type_glb) TRACELOG(LOG_INFO, "MODEL: [%s] Model basic data (glb) loaded successfully", fileName); - else if (data->file_type == cgltf_file_type_gltf) TRACELOG(LOG_INFO, "MODEL: [%s] Model basic data (glTF) loaded successfully", fileName); - else TRACELOG(LOG_WARNING, "MODEL: [%s] Model format not recognized", fileName); - - TRACELOG(LOG_INFO, " > Meshes count: %i", data->meshes_count); - TRACELOG(LOG_INFO, " > Materials count: %i (+1 default)", data->materials_count); - TRACELOG(LOG_DEBUG, " > Buffers count: %i", data->buffers_count); - TRACELOG(LOG_DEBUG, " > Images count: %i", data->images_count); - TRACELOG(LOG_DEBUG, " > Textures count: %i", data->textures_count); - - // Force reading data buffers (fills buffer_view->buffer->data) - // NOTE: If an uri is defined to base64 data or external path, it's automatically loaded - result = cgltf_load_buffers(&options, data, fileName); - if (result != cgltf_result_success) TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load mesh/material buffers", fileName); - - int primitivesCount = 0; - // NOTE: We will load every primitive in the glTF as a separate raylib Mesh. - // Determine total number of meshes needed from the node hierarchy. - for (unsigned int i = 0; i < data->nodes_count; i++) - { - cgltf_node *node = &(data->nodes[i]); - cgltf_mesh *mesh = node->mesh; - if (!mesh) - continue; - - for (unsigned int p = 0; p < mesh->primitives_count; p++) - { - if (mesh->primitives[p].type == cgltf_primitive_type_triangles) - primitivesCount++; - } - } - TRACELOG(LOG_DEBUG, " > Primitives (triangles only) count based on hierarchy : %i", primitivesCount); - - // Load our model data: meshes and materials - model.meshCount = primitivesCount; - model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh)); - - // NOTE: We keep an extra slot for default material, in case some mesh requires it - model.materialCount = (int)data->materials_count + 1; - model.materials = RL_CALLOC(model.materialCount, sizeof(Material)); - model.materials[0] = LoadMaterialDefault(); // Load default material (index: 0) - - // Load mesh-material indices, by default all meshes are mapped to material index: 0 - model.meshMaterial = RL_CALLOC(model.meshCount, sizeof(int)); - - // Load materials data - //---------------------------------------------------------------------------------------------------- - for (unsigned int i = 0, j = 1; i < data->materials_count; i++, j++) - { - model.materials[j] = LoadMaterialDefault(); - const char *texPath = GetDirectoryPath(fileName); - - // Check glTF material flow: PBR metallic/roughness flow - // NOTE: Alternatively, materials can follow PBR specular/glossiness flow - if (data->materials[i].has_pbr_metallic_roughness) - { - // Load base color texture (albedo) - if (data->materials[i].pbr_metallic_roughness.base_color_texture.texture) - { - Image imAlbedo = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.base_color_texture.texture->image, texPath); - if (imAlbedo.data != NULL) - { - model.materials[j].maps[MATERIAL_MAP_ALBEDO].texture = LoadTextureFromImage(imAlbedo); - UnloadImage(imAlbedo); - } - } - // Load base color factor (tint) - model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.r = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[0]*255); - model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.g = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[1]*255); - model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.b = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[2]*255); - model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.a = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[3]*255); - - // Load metallic/roughness texture - if (data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture) - { - Image imMetallicRoughness = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture->image, texPath); - if (imMetallicRoughness.data != NULL) - { - model.materials[j].maps[MATERIAL_MAP_ROUGHNESS].texture = LoadTextureFromImage(imMetallicRoughness); - UnloadImage(imMetallicRoughness); - } - - // Load metallic/roughness material properties - float roughness = data->materials[i].pbr_metallic_roughness.roughness_factor; - model.materials[j].maps[MATERIAL_MAP_ROUGHNESS].value = roughness; - - float metallic = data->materials[i].pbr_metallic_roughness.metallic_factor; - model.materials[j].maps[MATERIAL_MAP_METALNESS].value = metallic; - } - - // Load normal texture - if (data->materials[i].normal_texture.texture) - { - Image imNormal = LoadImageFromCgltfImage(data->materials[i].normal_texture.texture->image, texPath); - if (imNormal.data != NULL) - { - model.materials[j].maps[MATERIAL_MAP_NORMAL].texture = LoadTextureFromImage(imNormal); - UnloadImage(imNormal); - } - } - - // Load ambient occlusion texture - if (data->materials[i].occlusion_texture.texture) - { - Image imOcclusion = LoadImageFromCgltfImage(data->materials[i].occlusion_texture.texture->image, texPath); - if (imOcclusion.data != NULL) - { - model.materials[j].maps[MATERIAL_MAP_OCCLUSION].texture = LoadTextureFromImage(imOcclusion); - UnloadImage(imOcclusion); - } - } - - // Load emissive texture - if (data->materials[i].emissive_texture.texture) - { - Image imEmissive = LoadImageFromCgltfImage(data->materials[i].emissive_texture.texture->image, texPath); - if (imEmissive.data != NULL) - { - model.materials[j].maps[MATERIAL_MAP_EMISSION].texture = LoadTextureFromImage(imEmissive); - UnloadImage(imEmissive); - } - - // Load emissive color factor - model.materials[j].maps[MATERIAL_MAP_EMISSION].color.r = (unsigned char)(data->materials[i].emissive_factor[0]*255); - model.materials[j].maps[MATERIAL_MAP_EMISSION].color.g = (unsigned char)(data->materials[i].emissive_factor[1]*255); - model.materials[j].maps[MATERIAL_MAP_EMISSION].color.b = (unsigned char)(data->materials[i].emissive_factor[2]*255); - model.materials[j].maps[MATERIAL_MAP_EMISSION].color.a = 255; - } - } - - // Other possible materials not supported by raylib pipeline: - // has_clearcoat, has_transmission, has_volume, has_ior, has specular, has_sheen - } - - // Visit each node in the hierarchy and process any mesh linked from it. - // Each primitive within a glTF node becomes a Raylib Mesh. - // The local-to-world transform of each node is used to transform the - // points/normals/tangents of the created Mesh(es). - // Any glTF mesh linked from more than one Node (i.e. instancing) - // is turned into multiple Mesh's, as each Node will have its own - // transform applied. - // Note: the code below disregards the scenes defined in the file, all nodes are used. - //---------------------------------------------------------------------------------------------------- - int meshIndex = 0; - for (unsigned int i = 0; i < data->nodes_count; i++) - { - cgltf_node *node = &(data->nodes[i]); - - cgltf_mesh *mesh = node->mesh; - if (!mesh) - continue; - - cgltf_float worldTransform[16]; - cgltf_node_transform_world(node, worldTransform); - - Matrix worldMatrix = { - worldTransform[0], worldTransform[4], worldTransform[8], worldTransform[12], - worldTransform[1], worldTransform[5], worldTransform[9], worldTransform[13], - worldTransform[2], worldTransform[6], worldTransform[10], worldTransform[14], - worldTransform[3], worldTransform[7], worldTransform[11], worldTransform[15] - }; - - Matrix worldMatrixNormals = MatrixTranspose(MatrixInvert(worldMatrix)); - - for (unsigned int p = 0; p < mesh->primitives_count; p++) - { - // NOTE: We only support primitives defined by triangles - // Other alternatives: points, lines, line_strip, triangle_strip - if (mesh->primitives[p].type != cgltf_primitive_type_triangles) continue; - - // NOTE: Attributes data could be provided in several data formats (8, 8u, 16u, 32...), - // Only some formats for each attribute type are supported, read info at the top of this function! - - for (unsigned int j = 0; j < mesh->primitives[p].attributes_count; j++) - { - // Check the different attributes for every primitive - if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_position) // POSITION, vec3, float - { - cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data; - - // WARNING: SPECS: POSITION accessor MUST have its min and max properties defined - - if ((attribute->type == cgltf_type_vec3) && (attribute->component_type == cgltf_component_type_r_32f)) - { - // Init raylib mesh vertices to copy glTF attribute data - model.meshes[meshIndex].vertexCount = (int)attribute->count; - model.meshes[meshIndex].vertices = RL_MALLOC(attribute->count*3*sizeof(float)); - - // Load 3 components of float data type into mesh.vertices - LOAD_ATTRIBUTE(attribute, 3, float, model.meshes[meshIndex].vertices) - - // Transform the vertices - float *vertices = model.meshes[meshIndex].vertices; - for (unsigned int k = 0; k < attribute->count; k++) - { - Vector3 vt = Vector3Transform((Vector3){ vertices[3*k], vertices[3*k+1], vertices[3*k+2] }, worldMatrix); - vertices[3*k] = vt.x; - vertices[3*k+1] = vt.y; - vertices[3*k+2] = vt.z; - } - } - else TRACELOG(LOG_WARNING, "MODEL: [%s] Vertices attribute data format not supported, use vec3 float", fileName); - } - else if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_normal) // NORMAL, vec3, float - { - cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data; - - if ((attribute->type == cgltf_type_vec3) && (attribute->component_type == cgltf_component_type_r_32f)) - { - // Init raylib mesh normals to copy glTF attribute data - model.meshes[meshIndex].normals = RL_MALLOC(attribute->count*3*sizeof(float)); - - // Load 3 components of float data type into mesh.normals - LOAD_ATTRIBUTE(attribute, 3, float, model.meshes[meshIndex].normals) - - // Transform the normals - float *normals = model.meshes[meshIndex].normals; - for (unsigned int k = 0; k < attribute->count; k++) - { - Vector3 nt = Vector3Transform((Vector3){ normals[3*k], normals[3*k+1], normals[3*k+2] }, worldMatrixNormals); - normals[3*k] = nt.x; - normals[3*k+1] = nt.y; - normals[3*k+2] = nt.z; - } - } - else TRACELOG(LOG_WARNING, "MODEL: [%s] Normal attribute data format not supported, use vec3 float", fileName); - } - else if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_tangent) // TANGENT, vec3, float - { - cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data; - - if ((attribute->type == cgltf_type_vec4) && (attribute->component_type == cgltf_component_type_r_32f)) - { - // Init raylib mesh tangent to copy glTF attribute data - model.meshes[meshIndex].tangents = RL_MALLOC(attribute->count*4*sizeof(float)); - - // Load 4 components of float data type into mesh.tangents - LOAD_ATTRIBUTE(attribute, 4, float, model.meshes[meshIndex].tangents) - - // Transform the tangents - float *tangents = model.meshes[meshIndex].tangents; - for (unsigned int k = 0; k < attribute->count; k++) - { - Vector3 tt = Vector3Transform((Vector3){ tangents[3*k], tangents[3*k+1], tangents[3*k+2] }, worldMatrix); - tangents[3*k] = tt.x; - tangents[3*k+1] = tt.y; - tangents[3*k+2] = tt.z; - } - } - else TRACELOG(LOG_WARNING, "MODEL: [%s] Tangent attribute data format not supported, use vec4 float", fileName); - } - else if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_texcoord) // TEXCOORD_n, vec2, float/u8n/u16n - { - // Support up to 2 texture coordinates attributes - float *texcoordPtr = NULL; - - cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data; - - if (attribute->type == cgltf_type_vec2) - { - if (attribute->component_type == cgltf_component_type_r_32f) // vec2, float - { - // Init raylib mesh texcoords to copy glTF attribute data - texcoordPtr = (float *)RL_MALLOC(attribute->count*2*sizeof(float)); - - // Load 3 components of float data type into mesh.texcoords - LOAD_ATTRIBUTE(attribute, 2, float, texcoordPtr) - } - else if (attribute->component_type == cgltf_component_type_r_8u) // vec2, u8n - { - // Init raylib mesh texcoords to copy glTF attribute data - texcoordPtr = (float *)RL_MALLOC(attribute->count*2*sizeof(float)); - - // Load data into a temp buffer to be converted to raylib data type - unsigned char *temp = (unsigned char *)RL_MALLOC(attribute->count*2*sizeof(unsigned char)); - LOAD_ATTRIBUTE(attribute, 2, unsigned char, temp); - - // Convert data to raylib texcoord data type (float) - for (unsigned int t = 0; t < attribute->count*2; t++) texcoordPtr[t] = (float)temp[t]/255.0f; - - RL_FREE(temp); - } - else if (attribute->component_type == cgltf_component_type_r_16u) // vec2, u16n - { - // Init raylib mesh texcoords to copy glTF attribute data - texcoordPtr = (float *)RL_MALLOC(attribute->count*2*sizeof(float)); - - // Load data into a temp buffer to be converted to raylib data type - unsigned short *temp = (unsigned short *)RL_MALLOC(attribute->count*2*sizeof(unsigned short)); - LOAD_ATTRIBUTE(attribute, 2, unsigned short, temp); - - // Convert data to raylib texcoord data type (float) - for (unsigned int t = 0; t < attribute->count*2; t++) texcoordPtr[t] = (float)temp[t]/65535.0f; - - RL_FREE(temp); - } - else TRACELOG(LOG_WARNING, "MODEL: [%s] Texcoords attribute data format not supported", fileName); - } - else TRACELOG(LOG_WARNING, "MODEL: [%s] Texcoords attribute data format not supported, use vec2 float", fileName); - - int index = mesh->primitives[p].attributes[j].index; - if (index == 0) model.meshes[meshIndex].texcoords = texcoordPtr; - else if (index == 1) model.meshes[meshIndex].texcoords2 = texcoordPtr; - else - { - TRACELOG(LOG_WARNING, "MODEL: [%s] No more than 2 texture coordinates attributes supported", fileName); - if (texcoordPtr != NULL) RL_FREE(texcoordPtr); - } - } - else if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_color) // COLOR_n, vec3/vec4, float/u8n/u16n - { - cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data; - - // WARNING: SPECS: All components of each COLOR_n accessor element MUST be clamped to [0.0, 1.0] range - - if (attribute->type == cgltf_type_vec3) // RGB - { - if (attribute->component_type == cgltf_component_type_r_8u) - { - // Init raylib mesh color to copy glTF attribute data - model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char)); - - // Load data into a temp buffer to be converted to raylib data type - unsigned char *temp = RL_MALLOC(attribute->count*3*sizeof(unsigned char)); - LOAD_ATTRIBUTE(attribute, 3, unsigned char, temp); - - // Convert data to raylib color data type (4 bytes) - for (unsigned int c = 0, k = 0; c < (attribute->count*4 - 3); c += 4, k += 3) - { - model.meshes[meshIndex].colors[c] = temp[k]; - model.meshes[meshIndex].colors[c + 1] = temp[k + 1]; - model.meshes[meshIndex].colors[c + 2] = temp[k + 2]; - model.meshes[meshIndex].colors[c + 3] = 255; - } - - RL_FREE(temp); - } - else if (attribute->component_type == cgltf_component_type_r_16u) - { - // Init raylib mesh color to copy glTF attribute data - model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char)); - - // Load data into a temp buffer to be converted to raylib data type - unsigned short *temp = RL_MALLOC(attribute->count*3*sizeof(unsigned short)); - LOAD_ATTRIBUTE(attribute, 3, unsigned short, temp); - - // Convert data to raylib color data type (4 bytes) - for (unsigned int c = 0, k = 0; c < (attribute->count*4 - 3); c += 4, k += 3) - { - model.meshes[meshIndex].colors[c] = (unsigned char)(((float)temp[k]/65535.0f)*255.0f); - model.meshes[meshIndex].colors[c + 1] = (unsigned char)(((float)temp[k + 1]/65535.0f)*255.0f); - model.meshes[meshIndex].colors[c + 2] = (unsigned char)(((float)temp[k + 2]/65535.0f)*255.0f); - model.meshes[meshIndex].colors[c + 3] = 255; - } - - RL_FREE(temp); - } - else if (attribute->component_type == cgltf_component_type_r_32f) - { - // Init raylib mesh color to copy glTF attribute data - model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char)); - - // Load data into a temp buffer to be converted to raylib data type - float *temp = RL_MALLOC(attribute->count*3*sizeof(float)); - LOAD_ATTRIBUTE(attribute, 3, float, temp); - - // Convert data to raylib color data type (4 bytes) - for (unsigned int c = 0, k = 0; c < (attribute->count*4 - 3); c += 4, k += 3) - { - model.meshes[meshIndex].colors[c] = (unsigned char)(temp[k]*255.0f); - model.meshes[meshIndex].colors[c + 1] = (unsigned char)(temp[k + 1]*255.0f); - model.meshes[meshIndex].colors[c + 2] = (unsigned char)(temp[k + 2]*255.0f); - model.meshes[meshIndex].colors[c + 3] = 255; - } - - RL_FREE(temp); - } - else TRACELOG(LOG_WARNING, "MODEL: [%s] Color attribute data format not supported", fileName); - } - else if (attribute->type == cgltf_type_vec4) // RGBA - { - if (attribute->component_type == cgltf_component_type_r_8u) - { - // Init raylib mesh color to copy glTF attribute data - model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char)); - - // Load 4 components of unsigned char data type into mesh.colors - LOAD_ATTRIBUTE(attribute, 4, unsigned char, model.meshes[meshIndex].colors) - } - else if (attribute->component_type == cgltf_component_type_r_16u) - { - // Init raylib mesh color to copy glTF attribute data - model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char)); - - // Load data into a temp buffer to be converted to raylib data type - unsigned short *temp = RL_MALLOC(attribute->count*4*sizeof(unsigned short)); - LOAD_ATTRIBUTE(attribute, 4, unsigned short, temp); - - // Convert data to raylib color data type (4 bytes) - for (unsigned int c = 0; c < attribute->count*4; c++) model.meshes[meshIndex].colors[c] = (unsigned char)(((float)temp[c]/65535.0f)*255.0f); - - RL_FREE(temp); - } - else if (attribute->component_type == cgltf_component_type_r_32f) - { - // Init raylib mesh color to copy glTF attribute data - model.meshes[meshIndex].colors = RL_MALLOC(attribute->count*4*sizeof(unsigned char)); - - // Load data into a temp buffer to be converted to raylib data type - float *temp = RL_MALLOC(attribute->count*4*sizeof(float)); - LOAD_ATTRIBUTE(attribute, 4, float, temp); - - // Convert data to raylib color data type (4 bytes), we expect the color data normalized - for (unsigned int c = 0; c < attribute->count*4; c++) model.meshes[meshIndex].colors[c] = (unsigned char)(temp[c]*255.0f); - - RL_FREE(temp); - } - else TRACELOG(LOG_WARNING, "MODEL: [%s] Color attribute data format not supported", fileName); - } - else TRACELOG(LOG_WARNING, "MODEL: [%s] Color attribute data format not supported", fileName); - - - } - - // NOTE: Attributes related to animations are processed separately - } - - // Load primitive indices data (if provided) - if (mesh->primitives[p].indices != NULL) - { - cgltf_accessor *attribute = mesh->primitives[p].indices; - - model.meshes[meshIndex].triangleCount = (int)attribute->count/3; - - if (attribute->component_type == cgltf_component_type_r_16u) - { - // Init raylib mesh indices to copy glTF attribute data - model.meshes[meshIndex].indices = RL_MALLOC(attribute->count*sizeof(unsigned short)); - - // Load unsigned short data type into mesh.indices - LOAD_ATTRIBUTE(attribute, 1, unsigned short, model.meshes[meshIndex].indices) - } - else if (attribute->component_type == cgltf_component_type_r_32u) - { - // Init raylib mesh indices to copy glTF attribute data - model.meshes[meshIndex].indices = RL_MALLOC(attribute->count*sizeof(unsigned short)); - - // Load data into a temp buffer to be converted to raylib data type - unsigned int *temp = RL_MALLOC(attribute->count*sizeof(unsigned int)); - LOAD_ATTRIBUTE(attribute, 1, unsigned int, temp); - - // Convert data to raylib indices data type (unsigned short) - for (unsigned int d = 0; d < attribute->count; d++) model.meshes[meshIndex].indices[d] = (unsigned short)temp[d]; - - TRACELOG(LOG_WARNING, "MODEL: [%s] Indices data converted from u32 to u16, possible loss of data", fileName); - - RL_FREE(temp); - } - else TRACELOG(LOG_WARNING, "MODEL: [%s] Indices data format not supported, use u16", fileName); - } - else model.meshes[meshIndex].triangleCount = model.meshes[meshIndex].vertexCount/3; // Unindexed mesh - - // Assign to the primitive mesh the corresponding material index - // NOTE: If no material defined, mesh uses the already assigned default material (index: 0) - for (unsigned int m = 0; m < data->materials_count; m++) - { - // The primitive actually keeps the pointer to the corresponding material, - // raylib instead assigns to the mesh the by its index, as loaded in model.materials array - // To get the index, we check if material pointers match, and we assign the corresponding index, - // skipping index 0, the default material - if (&data->materials[m] == mesh->primitives[p].material) - { - model.meshMaterial[meshIndex] = m + 1; - break; - } - } - - meshIndex++; // Move to next mesh - } - } - - // Load glTF meshes animation data - // REF: https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#skins - // REF: https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#skinned-mesh-attributes - // - // LIMITATIONS: - // - Only supports 1 armature per file, and skips loading it if there are multiple armatures - // - Only supports linear interpolation (default method in Blender when checked "Always Sample Animations" when exporting a GLTF file) - // - Only supports translation/rotation/scale animation channel.path, weights not considered (i.e. morph targets) - //---------------------------------------------------------------------------------------------------- - if (data->skins_count == 1) - { - cgltf_skin skin = data->skins[0]; - model.bones = LoadBoneInfoGLTF(skin, &model.boneCount); - model.bindPose = RL_MALLOC(model.boneCount*sizeof(Transform)); - - for (int i = 0; i < model.boneCount; i++) - { - cgltf_node* node = skin.joints[i]; - cgltf_float worldTransform[16]; - cgltf_node_transform_world(node, worldTransform); - Matrix worldMatrix = { - worldTransform[0], worldTransform[4], worldTransform[8], worldTransform[12], - worldTransform[1], worldTransform[5], worldTransform[9], worldTransform[13], - worldTransform[2], worldTransform[6], worldTransform[10], worldTransform[14], - worldTransform[3], worldTransform[7], worldTransform[11], worldTransform[15] - }; - MatrixDecompose(worldMatrix, &(model.bindPose[i].translation), &(model.bindPose[i].rotation), &(model.bindPose[i].scale)); - } - } - else if (data->skins_count > 1) - { - TRACELOG(LOG_ERROR, "MODEL: [%s] can only load one skin (armature) per model, but gltf skins_count == %i", fileName, data->skins_count); - } - - meshIndex = 0; - for (unsigned int i = 0; i < data->nodes_count; i++) - { - cgltf_node *node = &(data->nodes[i]); - - cgltf_mesh *mesh = node->mesh; - if (!mesh) - continue; - - for (unsigned int p = 0; p < mesh->primitives_count; p++) - { - // NOTE: We only support primitives defined by triangles - if (mesh->primitives[p].type != cgltf_primitive_type_triangles) continue; - - for (unsigned int j = 0; j < mesh->primitives[p].attributes_count; j++) - { - // NOTE: JOINTS_1 + WEIGHT_1 will be used for +4 joints influencing a vertex -> Not supported by raylib - - if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_joints) // JOINTS_n (vec4: 4 bones max per vertex / u8, u16) - { - cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data; - - // NOTE: JOINTS_n can only be vec4 and u8/u16 - // SPECS: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#meshes-overview - - // WARNING: raylib only supports model.meshes[].boneIds as u8 (unsigned char), - // if data is provided in any other format, it is converted to supported format but - // it could imply data loss (a warning message is issued in that case) - - if (attribute->type == cgltf_type_vec4) - { - if (attribute->component_type == cgltf_component_type_r_8u) - { - // Init raylib mesh boneIds to copy glTF attribute data - model.meshes[meshIndex].boneIds = RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(unsigned char)); - - // Load attribute: vec4, u8 (unsigned char) - LOAD_ATTRIBUTE(attribute, 4, unsigned char, model.meshes[meshIndex].boneIds) - } - else if (attribute->component_type == cgltf_component_type_r_16u) - { - // Init raylib mesh boneIds to copy glTF attribute data - model.meshes[meshIndex].boneIds = RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(unsigned char)); - - // Load data into a temp buffer to be converted to raylib data type - unsigned short *temp = RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(unsigned short)); - LOAD_ATTRIBUTE(attribute, 4, unsigned short, temp); - - // Convert data to raylib color data type (4 bytes) - bool boneIdOverflowWarning = false; - for (int b = 0; b < model.meshes[meshIndex].vertexCount*4; b++) - { - if ((temp[b] > 255) && !boneIdOverflowWarning) - { - TRACELOG(LOG_WARNING, "MODEL: [%s] Joint attribute data format (u16) overflow", fileName); - boneIdOverflowWarning = true; - } - - // Despite the possible overflow, we convert data to unsigned char - model.meshes[meshIndex].boneIds[b] = (unsigned char)temp[b]; - } - - RL_FREE(temp); - } - else TRACELOG(LOG_WARNING, "MODEL: [%s] Joint attribute data format not supported", fileName); - } - else TRACELOG(LOG_WARNING, "MODEL: [%s] Joint attribute data format not supported", fileName); - } - else if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_weights) // WEIGHTS_n (vec4, u8n/u16n/f32) - { - cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data; - - if (attribute->type == cgltf_type_vec4) - { - // TODO: Support component types: u8, u16? - if (attribute->component_type == cgltf_component_type_r_8u) - { - // Init raylib mesh bone weight to copy glTF attribute data - model.meshes[meshIndex].boneWeights = RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(float)); - - // Load data into a temp buffer to be converted to raylib data type - unsigned char *temp = RL_MALLOC(attribute->count*4*sizeof(unsigned char)); - LOAD_ATTRIBUTE(attribute, 4, unsigned char, temp); - - // Convert data to raylib bone weight data type (4 bytes) - for (unsigned int b = 0; b < attribute->count*4; b++) model.meshes[meshIndex].boneWeights[b] = (float)temp[b]/255.0f; - - RL_FREE(temp); - } - else if (attribute->component_type == cgltf_component_type_r_16u) - { - // Init raylib mesh bone weight to copy glTF attribute data - model.meshes[meshIndex].boneWeights = RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(float)); - - // Load data into a temp buffer to be converted to raylib data type - unsigned short *temp = RL_MALLOC(attribute->count*4*sizeof(unsigned short)); - LOAD_ATTRIBUTE(attribute, 4, unsigned short, temp); - - // Convert data to raylib bone weight data type - for (unsigned int b = 0; b < attribute->count*4; b++) model.meshes[meshIndex].boneWeights[b] = (float)temp[b]/65535.0f; - - RL_FREE(temp); - } - else if (attribute->component_type == cgltf_component_type_r_32f) - { - // Init raylib mesh bone weight to copy glTF attribute data - model.meshes[meshIndex].boneWeights = RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(float)); - - // Load 4 components of float data type into mesh.boneWeights - // for cgltf_attribute_type_weights we have: - // - data.meshes[0] (256 vertices) - // - 256 values, provided as cgltf_type_vec4 of float (4 byte per joint, stride 16) - LOAD_ATTRIBUTE(attribute, 4, float, model.meshes[meshIndex].boneWeights) - } - else TRACELOG(LOG_WARNING, "MODEL: [%s] Joint weight attribute data format not supported, use vec4 float", fileName); - } - else TRACELOG(LOG_WARNING, "MODEL: [%s] Joint weight attribute data format not supported, use vec4 float", fileName); - } - } - - // Animated vertex data - model.meshes[meshIndex].animVertices = RL_CALLOC(model.meshes[meshIndex].vertexCount*3, sizeof(float)); - memcpy(model.meshes[meshIndex].animVertices, model.meshes[meshIndex].vertices, model.meshes[meshIndex].vertexCount*3*sizeof(float)); - model.meshes[meshIndex].animNormals = RL_CALLOC(model.meshes[meshIndex].vertexCount*3, sizeof(float)); - if (model.meshes[meshIndex].normals != NULL) - { - memcpy(model.meshes[meshIndex].animNormals, model.meshes[meshIndex].normals, model.meshes[meshIndex].vertexCount*3*sizeof(float)); - } - - meshIndex++; // Move to next mesh - } - - } - - // Free all cgltf loaded data - cgltf_free(data); - } - else TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load glTF data", fileName); - - // WARNING: cgltf requires the file pointer available while reading data - UnloadFileData(fileData); - - return model; -} - -// Get interpolated pose for bone sampler at a specific time. Returns true on success -static bool GetPoseAtTimeGLTF(cgltf_interpolation_type interpolationType, cgltf_accessor *input, cgltf_accessor *output, float time, void *data) -{ - if (interpolationType >= cgltf_interpolation_type_max_enum) return false; - - // Input and output should have the same count - float tstart = 0.0f; - float tend = 0.0f; - int keyframe = 0; // Defaults to first pose - - for (int i = 0; i < (int)input->count - 1; i++) - { - cgltf_bool r1 = cgltf_accessor_read_float(input, i, &tstart, 1); - if (!r1) return false; - - cgltf_bool r2 = cgltf_accessor_read_float(input, i + 1, &tend, 1); - if (!r2) return false; - - if ((tstart <= time) && (time < tend)) - { - keyframe = i; - break; - } - } - - // Constant animation, no need to interpolate - if (FloatEquals(tend, tstart)) return true; - - float duration = fmaxf((tend - tstart), EPSILON); - float t = (time - tstart)/duration; - t = (t < 0.0f)? 0.0f : t; - t = (t > 1.0f)? 1.0f : t; - - if (output->component_type != cgltf_component_type_r_32f) return false; - - if (output->type == cgltf_type_vec3) - { - switch (interpolationType) - { - case cgltf_interpolation_type_step: - { - float tmp[3] = { 0.0f }; - cgltf_accessor_read_float(output, keyframe, tmp, 3); - Vector3 v1 = {tmp[0], tmp[1], tmp[2]}; - Vector3 *r = data; - - *r = v1; - } break; - case cgltf_interpolation_type_linear: - { - float tmp[3] = { 0.0f }; - cgltf_accessor_read_float(output, keyframe, tmp, 3); - Vector3 v1 = {tmp[0], tmp[1], tmp[2]}; - cgltf_accessor_read_float(output, keyframe+1, tmp, 3); - Vector3 v2 = {tmp[0], tmp[1], tmp[2]}; - Vector3 *r = data; - - *r = Vector3Lerp(v1, v2, t); - } break; - case cgltf_interpolation_type_cubic_spline: - { - float tmp[3] = { 0.0f }; - cgltf_accessor_read_float(output, 3*keyframe+1, tmp, 3); - Vector3 v1 = {tmp[0], tmp[1], tmp[2]}; - cgltf_accessor_read_float(output, 3*keyframe+2, tmp, 3); - Vector3 tangent1 = {tmp[0], tmp[1], tmp[2]}; - cgltf_accessor_read_float(output, 3*(keyframe+1)+1, tmp, 3); - Vector3 v2 = {tmp[0], tmp[1], tmp[2]}; - cgltf_accessor_read_float(output, 3*(keyframe+1), tmp, 3); - Vector3 tangent2 = {tmp[0], tmp[1], tmp[2]}; - Vector3 *r = data; - - *r = Vector3CubicHermite(v1, tangent1, v2, tangent2, t); - } break; - default: break; - } - } - else if (output->type == cgltf_type_vec4) - { - // Only v4 is for rotations, so we know it's a quaternion - switch (interpolationType) - { - case cgltf_interpolation_type_step: - { - float tmp[4] = { 0.0f }; - cgltf_accessor_read_float(output, keyframe, tmp, 4); - Vector4 v1 = {tmp[0], tmp[1], tmp[2], tmp[3]}; - Vector4 *r = data; - - *r = v1; - } break; - case cgltf_interpolation_type_linear: - { - float tmp[4] = { 0.0f }; - cgltf_accessor_read_float(output, keyframe, tmp, 4); - Vector4 v1 = {tmp[0], tmp[1], tmp[2], tmp[3]}; - cgltf_accessor_read_float(output, keyframe+1, tmp, 4); - Vector4 v2 = {tmp[0], tmp[1], tmp[2], tmp[3]}; - Vector4 *r = data; - - *r = QuaternionSlerp(v1, v2, t); - } break; - case cgltf_interpolation_type_cubic_spline: - { - float tmp[4] = { 0.0f }; - cgltf_accessor_read_float(output, 3*keyframe+1, tmp, 4); - Vector4 v1 = {tmp[0], tmp[1], tmp[2], tmp[3]}; - cgltf_accessor_read_float(output, 3*keyframe+2, tmp, 4); - Vector4 outTangent1 = {tmp[0], tmp[1], tmp[2], 0.0f}; - cgltf_accessor_read_float(output, 3*(keyframe+1)+1, tmp, 4); - Vector4 v2 = {tmp[0], tmp[1], tmp[2], tmp[3]}; - cgltf_accessor_read_float(output, 3*(keyframe+1), tmp, 4); - Vector4 inTangent2 = {tmp[0], tmp[1], tmp[2], 0.0f}; - Vector4 *r = data; - - v1 = QuaternionNormalize(v1); - v2 = QuaternionNormalize(v2); - - if (Vector4DotProduct(v1, v2) < 0.0f) - { - v2 = Vector4Negate(v2); - } - - outTangent1 = Vector4Scale(outTangent1, duration); - inTangent2 = Vector4Scale(inTangent2, duration); - - *r = QuaternionCubicHermiteSpline(v1, outTangent1, v2, inTangent2, t); - } break; - default: break; - } - } - - return true; -} - -#define GLTF_ANIMDELAY 17 // Animation frames delay, (~1000 ms/60 FPS = 16.666666* ms) - -static ModelAnimation *LoadModelAnimationsGLTF(const char *fileName, int *animCount) -{ - // glTF file loading - int dataSize = 0; - unsigned char *fileData = LoadFileData(fileName, &dataSize); - - ModelAnimation *animations = NULL; - - // glTF data loading - cgltf_options options = { 0 }; - options.file.read = LoadFileGLTFCallback; - options.file.release = ReleaseFileGLTFCallback; - cgltf_data *data = NULL; - cgltf_result result = cgltf_parse(&options, fileData, dataSize, &data); - - if (result != cgltf_result_success) - { - TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load glTF data", fileName); - *animCount = 0; - return NULL; - } - - result = cgltf_load_buffers(&options, data, fileName); - if (result != cgltf_result_success) TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load animation buffers", fileName); - - if (result == cgltf_result_success) - { - if (data->skins_count == 1) - { - cgltf_skin skin = data->skins[0]; - *animCount = (int)data->animations_count; - animations = RL_MALLOC(data->animations_count*sizeof(ModelAnimation)); - - for (unsigned int i = 0; i < data->animations_count; i++) - { - animations[i].bones = LoadBoneInfoGLTF(skin, &animations[i].boneCount); - - cgltf_animation animData = data->animations[i]; - - struct Channels { - cgltf_animation_channel *translate; - cgltf_animation_channel *rotate; - cgltf_animation_channel *scale; - cgltf_interpolation_type interpolationType; - }; - - struct Channels *boneChannels = RL_CALLOC(animations[i].boneCount, sizeof(struct Channels)); - float animDuration = 0.0f; - - for (unsigned int j = 0; j < animData.channels_count; j++) - { - cgltf_animation_channel channel = animData.channels[j]; - int boneIndex = -1; - - for (unsigned int k = 0; k < skin.joints_count; k++) - { - if (animData.channels[j].target_node == skin.joints[k]) - { - boneIndex = k; - break; - } - } - - if (boneIndex == -1) - { - // Animation channel for a node not in the armature - continue; - } - - boneChannels[boneIndex].interpolationType = animData.channels[j].sampler->interpolation; - - if (animData.channels[j].sampler->interpolation != cgltf_interpolation_type_max_enum) - { - if (channel.target_path == cgltf_animation_path_type_translation) - { - boneChannels[boneIndex].translate = &animData.channels[j]; - } - else if (channel.target_path == cgltf_animation_path_type_rotation) - { - boneChannels[boneIndex].rotate = &animData.channels[j]; - } - else if (channel.target_path == cgltf_animation_path_type_scale) - { - boneChannels[boneIndex].scale = &animData.channels[j]; - } - else - { - TRACELOG(LOG_WARNING, "MODEL: [%s] Unsupported target_path on channel %d's sampler for animation %d. Skipping.", fileName, j, i); - } - } - else TRACELOG(LOG_WARNING, "MODEL: [%s] Invalid interpolation curve encountered for GLTF animation.", fileName); - - float t = 0.0f; - cgltf_bool r = cgltf_accessor_read_float(channel.sampler->input, channel.sampler->input->count - 1, &t, 1); - - if (!r) - { - TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load input time", fileName); - continue; - } - - animDuration = (t > animDuration)? t : animDuration; - } - - if (animData.name != NULL) - { - strncpy(animations[i].name, animData.name, sizeof(animations[i].name)); - animations[i].name[sizeof(animations[i].name) - 1] = '\0'; - } - - animations[i].frameCount = (int)(animDuration*1000.0f/GLTF_ANIMDELAY) + 1; - animations[i].framePoses = RL_MALLOC(animations[i].frameCount*sizeof(Transform *)); - - for (int j = 0; j < animations[i].frameCount; j++) - { - animations[i].framePoses[j] = RL_MALLOC(animations[i].boneCount*sizeof(Transform)); - float time = ((float) j*GLTF_ANIMDELAY)/1000.0f; - - for (int k = 0; k < animations[i].boneCount; k++) - { - Vector3 translation = {skin.joints[k]->translation[0], skin.joints[k]->translation[1], skin.joints[k]->translation[2]}; - Quaternion rotation = {skin.joints[k]->rotation[0], skin.joints[k]->rotation[1], skin.joints[k]->rotation[2], skin.joints[k]->rotation[3]}; - Vector3 scale = {skin.joints[k]->scale[0], skin.joints[k]->scale[1], skin.joints[k]->scale[2]}; - - if (boneChannels[k].translate) - { - if (!GetPoseAtTimeGLTF(boneChannels[k].interpolationType, boneChannels[k].translate->sampler->input, boneChannels[k].translate->sampler->output, time, &translation)) - { - TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load translate pose data for bone %s", fileName, animations[i].bones[k].name); - } - } - - if (boneChannels[k].rotate) - { - if (!GetPoseAtTimeGLTF(boneChannels[k].interpolationType, boneChannels[k].rotate->sampler->input, boneChannels[k].rotate->sampler->output, time, &rotation)) - { - TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load rotate pose data for bone %s", fileName, animations[i].bones[k].name); - } - } - - if (boneChannels[k].scale) - { - if (!GetPoseAtTimeGLTF(boneChannels[k].interpolationType, boneChannels[k].scale->sampler->input, boneChannels[k].scale->sampler->output, time, &scale)) - { - TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load scale pose data for bone %s", fileName, animations[i].bones[k].name); - } - } - - animations[i].framePoses[j][k] = (Transform){ - .translation = translation, - .rotation = rotation, - .scale = scale - }; - } - - BuildPoseFromParentJoints(animations[i].bones, animations[i].boneCount, animations[i].framePoses[j]); - } - - TRACELOG(LOG_INFO, "MODEL: [%s] Loaded animation: %s (%d frames, %fs)", fileName, (animData.name != NULL)? animData.name : "NULL", animations[i].frameCount, animDuration); - RL_FREE(boneChannels); - } - } - else TRACELOG(LOG_ERROR, "MODEL: [%s] expected exactly one skin to load animation data from, but found %i", fileName, data->skins_count); - - cgltf_free(data); - } - UnloadFileData(fileData); - return animations; -} -#endif - -#if defined(SUPPORT_FILEFORMAT_VOX) -// Load VOX (MagicaVoxel) mesh data -static Model LoadVOX(const char *fileName) -{ - Model model = { 0 }; - - int nbvertices = 0; - int meshescount = 0; - - // Read vox file into buffer - int dataSize = 0; - unsigned char *fileData = LoadFileData(fileName, &dataSize); - - if (fileData == 0) - { - TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load VOX file", fileName); - return model; - } - - // Read and build voxarray description - VoxArray3D voxarray = { 0 }; - int ret = Vox_LoadFromMemory(fileData, dataSize, &voxarray); - - if (ret != VOX_SUCCESS) - { - // Error - UnloadFileData(fileData); - - TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load VOX data", fileName); - return model; - } - else - { - // Success: Compute meshes count - nbvertices = voxarray.vertices.used; - meshescount = 1 + (nbvertices/65536); - - TRACELOG(LOG_INFO, "MODEL: [%s] VOX data loaded successfully : %i vertices/%i meshes", fileName, nbvertices, meshescount); - } - - // Build models from meshes - model.transform = MatrixIdentity(); - - model.meshCount = meshescount; - model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh)); - - model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int)); - - model.materialCount = 1; - model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material)); - model.materials[0] = LoadMaterialDefault(); - - // Init model meshes - int verticesRemain = voxarray.vertices.used; - int verticesMax = 65532; // 5461 voxels x 12 vertices per voxel -> 65532 (must be inf 65536) - - // 6*4 = 12 vertices per voxel - Vector3 *pvertices = (Vector3 *)voxarray.vertices.array; - Vector3 *pnormals = (Vector3 *)voxarray.normals.array; - Color *pcolors = (Color *)voxarray.colors.array; - - unsigned short *pindices = voxarray.indices.array; // 5461*6*6 = 196596 indices max per mesh - - int size = 0; - - for (int i = 0; i < meshescount; i++) - { - Mesh *pmesh = &model.meshes[i]; - memset(pmesh, 0, sizeof(Mesh)); - - // Copy vertices - pmesh->vertexCount = (int)fmin(verticesMax, verticesRemain); - - size = pmesh->vertexCount*sizeof(float)*3; - pmesh->vertices = (float *)RL_MALLOC(size); - memcpy(pmesh->vertices, pvertices, size); - - // Copy normals - pmesh->normals = (float *)RL_MALLOC(size); - memcpy(pmesh->normals, pnormals, size); - - // Copy indices - size = voxarray.indices.used*sizeof(unsigned short); - pmesh->indices = (unsigned short *)RL_MALLOC(size); - memcpy(pmesh->indices, pindices, size); - - pmesh->triangleCount = (pmesh->vertexCount/4)*2; - - // Copy colors - size = pmesh->vertexCount*sizeof(Color); - pmesh->colors = RL_MALLOC(size); - memcpy(pmesh->colors, pcolors, size); - - // First material index - model.meshMaterial[i] = 0; - - verticesRemain -= verticesMax; - pvertices += verticesMax; - pnormals += verticesMax; - pcolors += verticesMax; - } - - // Free buffers - Vox_FreeArrays(&voxarray); - UnloadFileData(fileData); - - return model; -} -#endif - -#if defined(SUPPORT_FILEFORMAT_M3D) -// Hook LoadFileData()/UnloadFileData() calls to M3D loaders -unsigned char *m3d_loaderhook(char *fn, unsigned int *len) { return LoadFileData((const char *)fn, (int *)len); } -void m3d_freehook(void *data) { UnloadFileData((unsigned char *)data); } - -// Load M3D mesh data -static Model LoadM3D(const char *fileName) -{ - Model model = { 0 }; - - m3d_t *m3d = NULL; - m3dp_t *prop = NULL; - int i, j, k, l, n, mi = -2, vcolor = 0; - - int dataSize = 0; - unsigned char *fileData = LoadFileData(fileName, &dataSize); - - if (fileData != NULL) - { - m3d = m3d_load(fileData, m3d_loaderhook, m3d_freehook, NULL); - - if (!m3d || M3D_ERR_ISFATAL(m3d->errcode)) - { - TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load M3D data, error code %d", fileName, m3d? m3d->errcode : -2); - if (m3d) m3d_free(m3d); - UnloadFileData(fileData); - return model; - } - else TRACELOG(LOG_INFO, "MODEL: [%s] M3D data loaded successfully: %i faces/%i materials", fileName, m3d->numface, m3d->nummaterial); - - // no face? this is probably just a material library - if (!m3d->numface) - { - m3d_free(m3d); - UnloadFileData(fileData); - return model; - } - - if (m3d->nummaterial > 0) - { - model.meshCount = model.materialCount = m3d->nummaterial; - TRACELOG(LOG_INFO, "MODEL: model has %i material meshes", model.materialCount); - } - else - { - model.meshCount = 1; model.materialCount = 0; - TRACELOG(LOG_INFO, "MODEL: No materials, putting all meshes in a default material"); - } - - // We always need a default material, so we add +1 - model.materialCount++; - - // Faces must be in non-decreasing materialid order. Verify that quickly, sorting them otherwise - // WARNING: Sorting is not needed, valid M3D model files should already be sorted - // Just keeping the sorting function for reference (Check PR #3363 #3385) - /* - for (i = 1; i < m3d->numface; i++) - { - if (m3d->face[i-1].materialid <= m3d->face[i].materialid) continue; - - // face[i-1] > face[i]. slide face[i] lower - m3df_t slider = m3d->face[i]; - j = i-1; - - do - { // face[j] > slider, face[j+1] is svailable vacant gap - m3d->face[j+1] = m3d->face[j]; - j = j-1; - } - while (j >= 0 && m3d->face[j].materialid > slider.materialid); - - m3d->face[j+1] = slider; - } - */ - - model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh)); - model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int)); - model.materials = (Material *)RL_CALLOC(model.materialCount + 1, sizeof(Material)); - - // Map no material to index 0 with default shader, everything else materialid + 1 - model.materials[0] = LoadMaterialDefault(); - - for (i = l = 0, k = -1; i < (int)m3d->numface; i++, l++) - { - // Materials are grouped together - if (mi != m3d->face[i].materialid) - { - // there should be only one material switch per material kind, but be bulletproof for non-optimal model files - if (k + 1 >= model.meshCount) - { - model.meshCount++; - model.meshes = (Mesh *)RL_REALLOC(model.meshes, model.meshCount*sizeof(Mesh)); - memset(&model.meshes[model.meshCount - 1], 0, sizeof(Mesh)); - model.meshMaterial = (int *)RL_REALLOC(model.meshMaterial, model.meshCount*sizeof(int)); - } - - k++; - mi = m3d->face[i].materialid; - - // Only allocate colors VertexBuffer if there's a color vertex in the model for this material batch - // if all colors are fully transparent black for all verteces of this materal, then we assume no vertex colors - for (j = i, l = vcolor = 0; (j < (int)m3d->numface) && (mi == m3d->face[j].materialid); j++, l++) - { - if (!m3d->vertex[m3d->face[j].vertex[0]].color || - !m3d->vertex[m3d->face[j].vertex[1]].color || - !m3d->vertex[m3d->face[j].vertex[2]].color) vcolor = 1; - } - - model.meshes[k].vertexCount = l*3; - model.meshes[k].triangleCount = l; - model.meshes[k].vertices = (float *)RL_CALLOC(model.meshes[k].vertexCount*3, sizeof(float)); - model.meshes[k].texcoords = (float *)RL_CALLOC(model.meshes[k].vertexCount*2, sizeof(float)); - model.meshes[k].normals = (float *)RL_CALLOC(model.meshes[k].vertexCount*3, sizeof(float)); - - // If no map is provided, or we have colors defined, we allocate storage for vertex colors - // M3D specs only consider vertex colors if no material is provided, however raylib uses both and mixes the colors - if ((mi == M3D_UNDEF) || vcolor) model.meshes[k].colors = RL_CALLOC(model.meshes[k].vertexCount*4, sizeof(unsigned char)); - - // If no map is provided and we allocated vertex colors, set them to white - if ((mi == M3D_UNDEF) && (model.meshes[k].colors != NULL)) - { - for (int c = 0; c < model.meshes[k].vertexCount*4; c++) model.meshes[k].colors[c] = 255; - } - - if (m3d->numbone && m3d->numskin) - { - model.meshes[k].boneIds = (unsigned char *)RL_CALLOC(model.meshes[k].vertexCount*4, sizeof(unsigned char)); - model.meshes[k].boneWeights = (float *)RL_CALLOC(model.meshes[k].vertexCount*4, sizeof(float)); - model.meshes[k].animVertices = (float *)RL_CALLOC(model.meshes[k].vertexCount*3, sizeof(float)); - model.meshes[k].animNormals = (float *)RL_CALLOC(model.meshes[k].vertexCount*3, sizeof(float)); - } - - model.meshMaterial[k] = mi + 1; - l = 0; - } - - // Process meshes per material, add triangles - model.meshes[k].vertices[l*9 + 0] = m3d->vertex[m3d->face[i].vertex[0]].x*m3d->scale; - model.meshes[k].vertices[l*9 + 1] = m3d->vertex[m3d->face[i].vertex[0]].y*m3d->scale; - model.meshes[k].vertices[l*9 + 2] = m3d->vertex[m3d->face[i].vertex[0]].z*m3d->scale; - model.meshes[k].vertices[l*9 + 3] = m3d->vertex[m3d->face[i].vertex[1]].x*m3d->scale; - model.meshes[k].vertices[l*9 + 4] = m3d->vertex[m3d->face[i].vertex[1]].y*m3d->scale; - model.meshes[k].vertices[l*9 + 5] = m3d->vertex[m3d->face[i].vertex[1]].z*m3d->scale; - model.meshes[k].vertices[l*9 + 6] = m3d->vertex[m3d->face[i].vertex[2]].x*m3d->scale; - model.meshes[k].vertices[l*9 + 7] = m3d->vertex[m3d->face[i].vertex[2]].y*m3d->scale; - model.meshes[k].vertices[l*9 + 8] = m3d->vertex[m3d->face[i].vertex[2]].z*m3d->scale; - - // Without vertex color (full transparency), we use the default color - if (model.meshes[k].colors != NULL) - { - if (m3d->vertex[m3d->face[i].vertex[0]].color & 0xFF000000) - memcpy(&model.meshes[k].colors[l*12 + 0], &m3d->vertex[m3d->face[i].vertex[0]].color, 4); - if (m3d->vertex[m3d->face[i].vertex[1]].color & 0xFF000000) - memcpy(&model.meshes[k].colors[l*12 + 4], &m3d->vertex[m3d->face[i].vertex[1]].color, 4); - if (m3d->vertex[m3d->face[i].vertex[2]].color & 0xFF000000) - memcpy(&model.meshes[k].colors[l*12 + 8], &m3d->vertex[m3d->face[i].vertex[2]].color, 4); - } - - if (m3d->face[i].texcoord[0] != M3D_UNDEF) - { - model.meshes[k].texcoords[l*6 + 0] = m3d->tmap[m3d->face[i].texcoord[0]].u; - model.meshes[k].texcoords[l*6 + 1] = 1.0f - m3d->tmap[m3d->face[i].texcoord[0]].v; - model.meshes[k].texcoords[l*6 + 2] = m3d->tmap[m3d->face[i].texcoord[1]].u; - model.meshes[k].texcoords[l*6 + 3] = 1.0f - m3d->tmap[m3d->face[i].texcoord[1]].v; - model.meshes[k].texcoords[l*6 + 4] = m3d->tmap[m3d->face[i].texcoord[2]].u; - model.meshes[k].texcoords[l*6 + 5] = 1.0f - m3d->tmap[m3d->face[i].texcoord[2]].v; - } - - if (m3d->face[i].normal[0] != M3D_UNDEF) - { - model.meshes[k].normals[l*9 + 0] = m3d->vertex[m3d->face[i].normal[0]].x; - model.meshes[k].normals[l*9 + 1] = m3d->vertex[m3d->face[i].normal[0]].y; - model.meshes[k].normals[l*9 + 2] = m3d->vertex[m3d->face[i].normal[0]].z; - model.meshes[k].normals[l*9 + 3] = m3d->vertex[m3d->face[i].normal[1]].x; - model.meshes[k].normals[l*9 + 4] = m3d->vertex[m3d->face[i].normal[1]].y; - model.meshes[k].normals[l*9 + 5] = m3d->vertex[m3d->face[i].normal[1]].z; - model.meshes[k].normals[l*9 + 6] = m3d->vertex[m3d->face[i].normal[2]].x; - model.meshes[k].normals[l*9 + 7] = m3d->vertex[m3d->face[i].normal[2]].y; - model.meshes[k].normals[l*9 + 8] = m3d->vertex[m3d->face[i].normal[2]].z; - } - - // Add skin (vertex / bone weight pairs) - if (m3d->numbone && m3d->numskin) - { - for (n = 0; n < 3; n++) - { - int skinid = m3d->vertex[m3d->face[i].vertex[n]].skinid; - - // Check if there is a skin for this mesh, should be, just failsafe - if ((skinid != M3D_UNDEF) && (skinid < (int)m3d->numskin)) - { - for (j = 0; j < 4; j++) - { - model.meshes[k].boneIds[l*12 + n*4 + j] = m3d->skin[skinid].boneid[j]; - model.meshes[k].boneWeights[l*12 + n*4 + j] = m3d->skin[skinid].weight[j]; - } - } - else - { - // raylib does not handle boneless meshes with skeletal animations, so - // we put all vertices without a bone into a special "no bone" bone - model.meshes[k].boneIds[l*12 + n*4] = m3d->numbone; - model.meshes[k].boneWeights[l*12 + n*4] = 1.0f; - } - } - } - } - - // Load materials - for (i = 0; i < (int)m3d->nummaterial; i++) - { - model.materials[i + 1] = LoadMaterialDefault(); - - for (j = 0; j < m3d->material[i].numprop; j++) - { - prop = &m3d->material[i].prop[j]; - - switch (prop->type) - { - case m3dp_Kd: - { - memcpy(&model.materials[i + 1].maps[MATERIAL_MAP_DIFFUSE].color, &prop->value.color, 4); - model.materials[i + 1].maps[MATERIAL_MAP_DIFFUSE].value = 0.0f; - } break; - case m3dp_Ks: - { - memcpy(&model.materials[i + 1].maps[MATERIAL_MAP_SPECULAR].color, &prop->value.color, 4); - } break; - case m3dp_Ns: - { - model.materials[i + 1].maps[MATERIAL_MAP_SPECULAR].value = prop->value.fnum; - } break; - case m3dp_Ke: - { - memcpy(&model.materials[i + 1].maps[MATERIAL_MAP_EMISSION].color, &prop->value.color, 4); - model.materials[i + 1].maps[MATERIAL_MAP_EMISSION].value = 0.0f; - } break; - case m3dp_Pm: - { - model.materials[i + 1].maps[MATERIAL_MAP_METALNESS].value = prop->value.fnum; - } break; - case m3dp_Pr: - { - model.materials[i + 1].maps[MATERIAL_MAP_ROUGHNESS].value = prop->value.fnum; - } break; - case m3dp_Ps: - { - model.materials[i + 1].maps[MATERIAL_MAP_NORMAL].color = WHITE; - model.materials[i + 1].maps[MATERIAL_MAP_NORMAL].value = prop->value.fnum; - } break; - default: - { - if (prop->type >= 128) - { - Image image = { 0 }; - image.data = m3d->texture[prop->value.textureid].d; - image.width = m3d->texture[prop->value.textureid].w; - image.height = m3d->texture[prop->value.textureid].h; - image.mipmaps = 1; - image.format = (m3d->texture[prop->value.textureid].f == 4)? PIXELFORMAT_UNCOMPRESSED_R8G8B8A8 : - ((m3d->texture[prop->value.textureid].f == 3)? PIXELFORMAT_UNCOMPRESSED_R8G8B8 : - ((m3d->texture[prop->value.textureid].f == 2)? PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA : PIXELFORMAT_UNCOMPRESSED_GRAYSCALE)); - - switch (prop->type) - { - case m3dp_map_Kd: model.materials[i + 1].maps[MATERIAL_MAP_DIFFUSE].texture = LoadTextureFromImage(image); break; - case m3dp_map_Ks: model.materials[i + 1].maps[MATERIAL_MAP_SPECULAR].texture = LoadTextureFromImage(image); break; - case m3dp_map_Ke: model.materials[i + 1].maps[MATERIAL_MAP_EMISSION].texture = LoadTextureFromImage(image); break; - case m3dp_map_Km: model.materials[i + 1].maps[MATERIAL_MAP_NORMAL].texture = LoadTextureFromImage(image); break; - case m3dp_map_Ka: model.materials[i + 1].maps[MATERIAL_MAP_OCCLUSION].texture = LoadTextureFromImage(image); break; - case m3dp_map_Pm: model.materials[i + 1].maps[MATERIAL_MAP_ROUGHNESS].texture = LoadTextureFromImage(image); break; - default: break; - } - } - } break; - } - } - } - - // Load bones - if (m3d->numbone) - { - model.boneCount = m3d->numbone + 1; - model.bones = RL_CALLOC(model.boneCount, sizeof(BoneInfo)); - model.bindPose = RL_CALLOC(model.boneCount, sizeof(Transform)); - - for (i = 0; i < (int)m3d->numbone; i++) - { - model.bones[i].parent = m3d->bone[i].parent; - strncpy(model.bones[i].name, m3d->bone[i].name, sizeof(model.bones[i].name)); - model.bindPose[i].translation.x = m3d->vertex[m3d->bone[i].pos].x*m3d->scale; - model.bindPose[i].translation.y = m3d->vertex[m3d->bone[i].pos].y*m3d->scale; - model.bindPose[i].translation.z = m3d->vertex[m3d->bone[i].pos].z*m3d->scale; - model.bindPose[i].rotation.x = m3d->vertex[m3d->bone[i].ori].x; - model.bindPose[i].rotation.y = m3d->vertex[m3d->bone[i].ori].y; - model.bindPose[i].rotation.z = m3d->vertex[m3d->bone[i].ori].z; - model.bindPose[i].rotation.w = m3d->vertex[m3d->bone[i].ori].w; - - // TODO: If the orientation quaternion is not normalized, then that's encoding scaling - model.bindPose[i].rotation = QuaternionNormalize(model.bindPose[i].rotation); - model.bindPose[i].scale.x = model.bindPose[i].scale.y = model.bindPose[i].scale.z = 1.0f; - - // Child bones are stored in parent bone relative space, convert that into model space - if (model.bones[i].parent >= 0) - { - model.bindPose[i].rotation = QuaternionMultiply(model.bindPose[model.bones[i].parent].rotation, model.bindPose[i].rotation); - model.bindPose[i].translation = Vector3RotateByQuaternion(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].rotation); - model.bindPose[i].translation = Vector3Add(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].translation); - model.bindPose[i].scale = Vector3Multiply(model.bindPose[i].scale, model.bindPose[model.bones[i].parent].scale); - } - } - - // Add a special "no bone" bone - model.bones[i].parent = -1; - strcpy(model.bones[i].name, "NO BONE"); - model.bindPose[i].translation.x = 0.0f; - model.bindPose[i].translation.y = 0.0f; - model.bindPose[i].translation.z = 0.0f; - model.bindPose[i].rotation.x = 0.0f; - model.bindPose[i].rotation.y = 0.0f; - model.bindPose[i].rotation.z = 0.0f; - model.bindPose[i].rotation.w = 1.0f; - model.bindPose[i].scale.x = model.bindPose[i].scale.y = model.bindPose[i].scale.z = 1.0f; - } - - // Load bone-pose default mesh into animation vertices. These will be updated when UpdateModelAnimation gets - // called, but not before, however DrawMesh uses these if they exist (so not good if they are left empty) - if (m3d->numbone && m3d->numskin) - { - for (i = 0; i < model.meshCount; i++) - { - memcpy(model.meshes[i].animVertices, model.meshes[i].vertices, model.meshes[i].vertexCount*3*sizeof(float)); - memcpy(model.meshes[i].animNormals, model.meshes[i].normals, model.meshes[i].vertexCount*3*sizeof(float)); - } - } - - m3d_free(m3d); - UnloadFileData(fileData); - } - - return model; -} - -#define M3D_ANIMDELAY 17 // Animation frames delay, (~1000 ms/60 FPS = 16.666666* ms) - -// Load M3D animation data -static ModelAnimation *LoadModelAnimationsM3D(const char *fileName, int *animCount) -{ - ModelAnimation *animations = NULL; - - m3d_t *m3d = NULL; - int i = 0, j = 0; - *animCount = 0; - - int dataSize = 0; - unsigned char *fileData = LoadFileData(fileName, &dataSize); - - if (fileData != NULL) - { - m3d = m3d_load(fileData, m3d_loaderhook, m3d_freehook, NULL); - - if (!m3d || M3D_ERR_ISFATAL(m3d->errcode)) - { - TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load M3D data, error code %d", fileName, m3d? m3d->errcode : -2); - UnloadFileData(fileData); - return NULL; - } - else TRACELOG(LOG_INFO, "MODEL: [%s] M3D data loaded successfully: %i animations, %i bones, %i skins", fileName, - m3d->numaction, m3d->numbone, m3d->numskin); - - // No animation or bone+skin? - if (!m3d->numaction || !m3d->numbone || !m3d->numskin) - { - m3d_free(m3d); - UnloadFileData(fileData); - return NULL; - } - - animations = RL_MALLOC(m3d->numaction*sizeof(ModelAnimation)); - *animCount = m3d->numaction; - - for (unsigned int a = 0; a < m3d->numaction; a++) - { - animations[a].frameCount = m3d->action[a].durationmsec/M3D_ANIMDELAY; - animations[a].boneCount = m3d->numbone + 1; - animations[a].bones = RL_MALLOC((m3d->numbone + 1)*sizeof(BoneInfo)); - animations[a].framePoses = RL_MALLOC(animations[a].frameCount*sizeof(Transform *)); - strncpy(animations[a].name, m3d->action[a].name, sizeof(animations[a].name)); - animations[a].name[sizeof(animations[a].name) - 1] = '\0'; - - TRACELOG(LOG_INFO, "MODEL: [%s] animation #%i: %i msec, %i frames", fileName, a, m3d->action[a].durationmsec, animations[a].frameCount); - - for (i = 0; i < (int)m3d->numbone; i++) - { - animations[a].bones[i].parent = m3d->bone[i].parent; - strncpy(animations[a].bones[i].name, m3d->bone[i].name, sizeof(animations[a].bones[i].name)); - } - - // A special, never transformed "no bone" bone, used for boneless vertices - animations[a].bones[i].parent = -1; - strcpy(animations[a].bones[i].name, "NO BONE"); - - // M3D stores frames at arbitrary intervals with sparse skeletons. We need full skeletons at - // regular intervals, so let the M3D SDK do the heavy lifting and calculate interpolated bones - for (i = 0; i < animations[a].frameCount; i++) - { - animations[a].framePoses[i] = RL_MALLOC((m3d->numbone + 1)*sizeof(Transform)); - - m3db_t *pose = m3d_pose(m3d, a, i*M3D_ANIMDELAY); - - if (pose != NULL) - { - for (j = 0; j < (int)m3d->numbone; j++) - { - animations[a].framePoses[i][j].translation.x = m3d->vertex[pose[j].pos].x*m3d->scale; - animations[a].framePoses[i][j].translation.y = m3d->vertex[pose[j].pos].y*m3d->scale; - animations[a].framePoses[i][j].translation.z = m3d->vertex[pose[j].pos].z*m3d->scale; - animations[a].framePoses[i][j].rotation.x = m3d->vertex[pose[j].ori].x; - animations[a].framePoses[i][j].rotation.y = m3d->vertex[pose[j].ori].y; - animations[a].framePoses[i][j].rotation.z = m3d->vertex[pose[j].ori].z; - animations[a].framePoses[i][j].rotation.w = m3d->vertex[pose[j].ori].w; - animations[a].framePoses[i][j].rotation = QuaternionNormalize(animations[a].framePoses[i][j].rotation); - animations[a].framePoses[i][j].scale.x = animations[a].framePoses[i][j].scale.y = animations[a].framePoses[i][j].scale.z = 1.0f; - - // Child bones are stored in parent bone relative space, convert that into model space - if (animations[a].bones[j].parent >= 0) - { - animations[a].framePoses[i][j].rotation = QuaternionMultiply(animations[a].framePoses[i][animations[a].bones[j].parent].rotation, animations[a].framePoses[i][j].rotation); - animations[a].framePoses[i][j].translation = Vector3RotateByQuaternion(animations[a].framePoses[i][j].translation, animations[a].framePoses[i][animations[a].bones[j].parent].rotation); - animations[a].framePoses[i][j].translation = Vector3Add(animations[a].framePoses[i][j].translation, animations[a].framePoses[i][animations[a].bones[j].parent].translation); - animations[a].framePoses[i][j].scale = Vector3Multiply(animations[a].framePoses[i][j].scale, animations[a].framePoses[i][animations[a].bones[j].parent].scale); - } - } - - // Default transform for the "no bone" bone - animations[a].framePoses[i][j].translation.x = 0.0f; - animations[a].framePoses[i][j].translation.y = 0.0f; - animations[a].framePoses[i][j].translation.z = 0.0f; - animations[a].framePoses[i][j].rotation.x = 0.0f; - animations[a].framePoses[i][j].rotation.y = 0.0f; - animations[a].framePoses[i][j].rotation.z = 0.0f; - animations[a].framePoses[i][j].rotation.w = 1.0f; - animations[a].framePoses[i][j].scale.x = animations[a].framePoses[i][j].scale.y = animations[a].framePoses[i][j].scale.z = 1.0f; - RL_FREE(pose); - } - } - } - - m3d_free(m3d); - UnloadFileData(fileData); - } - - return animations; -} -#endif - -#endif // SUPPORT_MODULE_RMODELS