const std = @import("std"); const raylib_helper = @import("../lib_helpers/raylib_helper.zig"); const raylib = raylib_helper.raylib; const v3 = raylib_helper.v3; const A7r = std.mem.Allocator; const comptimePrint = std.fmt.comptimePrint; const COORDINATE_FIELD_BYTES = 5; // 5 for 32x32x32 chunk size. const CHUNK_SIZE = 1 >> COORDINATE_FIELD_BYTES; // 32 const RawQuad = struct { tile: u32, top_left: raylib.Vector3, top_right: raylib.Vector3, bottom_right: raylib.Vector3, bottom_left: raylib.Vector3, normal: raylib.Vector3, width: f32, height: f32, top_obscuring_pattern: u32, left_obscuring_pattern: u32, right_obscuring_pattern: u32, bottom_obscuring_pattern: u32, top_left_obscured: bool, top_right_obscured: bool, bottom_right_obscured: bool, bottom_left_obscured: bool, }; const Metadata1 = packed struct { ambient_occlusion_1: u32, ambient_occlusion_2: u32, ambient_occlusion_corner1: bool, ambient_occlusion_corner2: bool, ambient_occlusion_corner3: bool, quad_height: u6, quad_width: u6, unused: u17 = 0, unused_2: u32 = 0, }; comptime { if (@bitSizeOf(Metadata1) != 128) { @compileError(comptimePrint("Metadata 1 has wrong size. Expected 128 bits, found {}", .{@bitSizeOf(Metadata1)})); } } pub const Chunk = struct { tiles: []u32, a7r: A7r, pub fn init(a7r: A7r) !Chunk { const self = Chunk{ .a7r = a7r, .tiles = try a7r.alloc(u32, 32 * 32 * 32), }; @memset(self.tiles, 0); return self; } pub fn deinit(self: Chunk) void { self.a7r.free(self.tiles); } pub fn getTile(self: Chunk, x: u5, y: u5, z: u5) u32 { // Fetch the tile at (x, y, z), but with potential side effects. If you imagine tiles to be a 3-dimensional array, this would be tiles[x][y][z]. return self.tiles[@as(u15, x) << 10 | @as(u15, y) << 5 | @as(u15, z)]; } pub fn setTile(self: Chunk, x: u5, y: u5, z: u5, tile: u32) void { // Set the tile at (x, y, z). If you imagine tiles to be a 3-dimensional array, this would be tiles[x][y][z] = tile. self.tiles[@as(u15, x) << 10 | @as(u15, y) << 5 | @as(u15, z)] = tile; } fn getTileRaw(self: Chunk, x: u5, y: u5, z: u5) u32 { // Fetch the tile at (x, y, z) without changin anything. If you imagine tiles to be a 3-dimensional array, this would be tiles[x][y][z]. return self.tiles[@as(u15, x) << 10 | @as(u15, y) << 5 | @as(u15, z)]; } inline fn getTileRawShifted(self: Chunk, x: u5, y: u5, z: u5, comptime d: comptime_int) u32 { // This cyclicaly permutes the x, y, z coordinates at compile time. Useful when iterating over x, y, and z axis. if (d % 3 == 0) { return self.getTileRaw(x, y, z); } else if (d % 3 == 1) { return self.getTileRaw(y, z, x); } else if (d % 3 == 2) { return self.getTileRaw(z, x, y); } } fn pack_raw_quad(y: usize, y2: usize, z: usize, z2: usize, sign: comptime_int, d: comptime_int, surface: u32, xf: f32) RawQuad { const ymin: f32 = @as(f32, @floatFromInt(y)) - 0.5; const ymax: f32 = @as(f32, @floatFromInt(y2)) + 0.5; const zmin: f32 = @as(f32, @floatFromInt(z)) - 0.5; const zmax: f32 = @as(f32, @floatFromInt(z2)) + 0.5; const yleft: f32 = if (sign == 1) ymin else ymax; const yright: f32 = if (sign == 1) ymax else ymin; const zleft: f32 = if (sign == 1) zmin else zmax; const zright: f32 = if (sign == 1) zmax else zmin; var raw_quad: RawQuad = undefined; switch (d) { 0 => { raw_quad = .{ .tile = surface, .top_left = v3.new(xf + 0.5 * sign, ymax, zright), .top_right = v3.new(xf + 0.5 * sign, ymax, zleft), .bottom_left = v3.new(xf + 0.5 * sign, ymin, zright), .bottom_right = v3.new(xf + 0.5 * sign, ymin, zleft), .normal = v3.new(sign, 0, 0), .width = zmax - zmin, .height = ymax - ymin, .top_obscuring_pattern = 0, .left_obscuring_pattern = 0, .right_obscuring_pattern = 0, .bottom_obscuring_pattern = 0, .top_left_obscured = false, .top_right_obscured = false, .bottom_right_obscured = false, .bottom_left_obscured = false, }; }, 1 => { raw_quad = .{ .tile = surface, .bottom_left = v3.new(yleft, zmin, xf + 0.5 * sign), .top_left = v3.new(yleft, zmax, xf + 0.5 * sign), .bottom_right = v3.new(yright, zmin, xf + 0.5 * sign), .top_right = v3.new(yright, zmax, xf + 0.5 * sign), .normal = v3.new(0, 0, sign), .height = zmax - zmin, .width = ymax - ymin, .top_obscuring_pattern = 0, .left_obscuring_pattern = 0, .right_obscuring_pattern = 0, .bottom_obscuring_pattern = 0, .top_left_obscured = false, .top_right_obscured = false, .bottom_right_obscured = false, .bottom_left_obscured = false, }; }, 2 => { raw_quad = .{ .tile = surface, .top_left = v3.new(zleft, xf + 0.5 * sign, ymin), .top_right = v3.new(zright, xf + 0.5 * sign, ymin), .bottom_left = v3.new(zleft, xf + 0.5 * sign, ymax), .bottom_right = v3.new(zright, xf + 0.5 * sign, ymax), .normal = v3.new(0, sign, 0), .width = zmax - zmin, .height = ymax - ymin, .top_obscuring_pattern = 0xffffffff, .left_obscuring_pattern = 0xffffffff, .right_obscuring_pattern = 0xffffffff, .bottom_obscuring_pattern = 0xffffffff, .top_left_obscured = false, .top_right_obscured = false, .bottom_right_obscured = false, .bottom_left_obscured = false, }; }, else => unreachable, } return raw_quad; } pub fn createMesh(chunk: Chunk, tile_rows: u32, tile_columns: u32) !raylib.Mesh { var raw_quads = try std.ArrayList(RawQuad).initCapacity(chunk.a7r, 4096); defer raw_quads.deinit(); // Begin scanning the chunk for block surfaces to make raw quads. inline for (0..3) |d| { // For each of the 3 dimensions, for (0..32) |raw_x| { const x: u5 = @intCast(raw_x); var positive_tile_surfaces: [32][32]u32 = .{.{0} ** 32} ** 32; var negative_tile_surfaces: [32][32]u32 = .{.{0} ** 32} ** 32; for (0..32) |raw_y| for (0..32) |raw_z| { const y: u5 = @intCast(raw_y); const z: u5 = @intCast(raw_z); const tile: u32 = chunk.getTileRawShifted(x, y, z, d); if (tile == 0) continue; if (x == 31 or chunk.getTileRawShifted(x + 1, y, z, d) == 0) positive_tile_surfaces[y][z] = tile; if (x == 0 or chunk.getTileRawShifted(x - 1, y, z, d) == 0) negative_tile_surfaces[y][z] = tile; }; const xf: f32 = @floatFromInt(raw_x); inline for (.{ -1, 1 }) |sign| { var tile_surfaces = if (sign == 1) positive_tile_surfaces else negative_tile_surfaces; for (0..32) |y| for (0..32) |z| { const surface = tile_surfaces[y][z]; if (surface == 0) continue; var y2 = y + 1; var z2 = z + 1; while (y2 <= 31 and tile_surfaces[y2][z] == surface) : (y2 += 1) { tile_surfaces[y2][z] = 0; } zloop: while (z2 <= 31) : (z2 += 1) { for (y..y2) |ytmp| if (tile_surfaces[ytmp][z2] != surface) break :zloop; for (y..y2) |ytmp| tile_surfaces[ytmp][z2] = 0; } // todo: scan tiles around quad surface for ambient occlusion y2 -= 1; z2 -= 1; tile_surfaces[y][z] = 0; const raw_quad = pack_raw_quad(y, y2, z, z2, sign, d, surface, xf); try raw_quads.append(raw_quad); }; } } } const triangle_count: i32 = @as(i32, @intCast(raw_quads.items.len)) * 2; const arr_size: u32 = @as(u32, @intCast(triangle_count)) * 3 * @sizeOf(f32); const vertices: [*]f32 = @ptrCast(@alignCast(raylib.MemAlloc(arr_size * 3))); const texcoords: [*]f32 = @ptrCast(@alignCast(raylib.MemAlloc(arr_size * 2))); const texcoords2: [*]f32 = @ptrCast(@alignCast(raylib.MemAlloc(arr_size * 2))); const normals: [*]f32 = @ptrCast(@alignCast(raylib.MemAlloc(arr_size * 3))); const metadata1_packed: [*]f32 = @ptrCast(@alignCast(raylib.MemAlloc(arr_size * 4))); for (raw_quads.items, 0..) |raw_quad, i| { if (raw_quad.tile <= 0) continue; const tile = raw_quad.tile; for (0..6) |j| { normals[18 * i + 3 * j + 0] = raw_quad.normal.x; normals[18 * i + 3 * j + 1] = raw_quad.normal.y; normals[18 * i + 3 * j + 2] = raw_quad.normal.z; } const left_uv = @as(f32, @floatFromInt(tile % tile_columns)) / @as(f32, @floatFromInt(tile_columns)); const right_uv = @as(f32, @floatFromInt(tile % tile_columns + 1)) / @as(f32, @floatFromInt(tile_columns)); const top_uv = @as(f32, @floatFromInt(tile / tile_columns)) / @as(f32, @floatFromInt(tile_rows)); const bottom_uv = @as(f32, @floatFromInt(tile / tile_columns + 1)) / @as(f32, @floatFromInt(tile_rows)); const VERTICES_BLOCK_SIZE = 2 * 3 * 3; const TEXCOORDS_BLOCK_SIZE = 2 * 2 * 3; // Unwrap raw quads vertex coordinates and UV coordinates into OpenGL buffers. const vertex_corners = .{ raw_quad.top_left, raw_quad.bottom_left, raw_quad.top_right, raw_quad.bottom_right, raw_quad.top_right, raw_quad.bottom_left }; const texcoords_x = .{ left_uv, left_uv, right_uv, right_uv, right_uv, left_uv }; const texcoords_y = .{ top_uv, bottom_uv } ** 3; const texcoords2_x = .{ 0.0, 0.0, raw_quad.width, raw_quad.width, raw_quad.width, 0.0 }; const texcoords2_y = .{ 0.0, raw_quad.height } ** 3; inline for (0..6) |corner_id| { vertices[VERTICES_BLOCK_SIZE * i + corner_id * 3 + 0] = vertex_corners[corner_id].x; vertices[VERTICES_BLOCK_SIZE * i + corner_id * 3 + 1] = vertex_corners[corner_id].y; vertices[VERTICES_BLOCK_SIZE * i + corner_id * 3 + 2] = vertex_corners[corner_id].z; texcoords[TEXCOORDS_BLOCK_SIZE * i + corner_id * 2 + 0] = texcoords_x[corner_id]; texcoords[TEXCOORDS_BLOCK_SIZE * i + corner_id * 2 + 1] = texcoords_y[corner_id]; texcoords2[TEXCOORDS_BLOCK_SIZE * i + corner_id * 2 + 0] = texcoords2_x[corner_id]; texcoords2[TEXCOORDS_BLOCK_SIZE * i + corner_id * 2 + 1] = texcoords2_y[corner_id]; } // Store metadata into OpenGL buffers. for (0..3) |j| { const metadata1 = Metadata1{ .ambient_occlusion_1 = raw_quad.left_obscuring_pattern, .ambient_occlusion_2 = raw_quad.right_obscuring_pattern, .ambient_occlusion_corner1 = raw_quad.top_left_obscured, .ambient_occlusion_corner2 = raw_quad.bottom_left_obscured, .ambient_occlusion_corner3 = raw_quad.top_right_obscured, .quad_height = @intFromFloat(raw_quad.height), .quad_width = @intFromFloat(raw_quad.width), }; const metadata1_baked: [4]f32 = @bitCast(metadata1); for (0..4) |k| { metadata1_packed[24 * i + 4 * j + k] = @bitCast(@as(f32, metadata1_baked[k])); } } for (3..6) |j| { const metadata1 = Metadata1{ .ambient_occlusion_1 = raw_quad.right_obscuring_pattern, .ambient_occlusion_2 = raw_quad.bottom_obscuring_pattern, .ambient_occlusion_corner1 = raw_quad.bottom_right_obscured, .ambient_occlusion_corner2 = raw_quad.top_right_obscured, .ambient_occlusion_corner3 = raw_quad.bottom_left_obscured, .quad_height = @intFromFloat(raw_quad.height), .quad_width = @intFromFloat(raw_quad.width), }; const metadata1_baked: [4]f32 = @bitCast(metadata1); for (0..4) |k| { metadata1_packed[24 * i + 4 * j + k] = @bitCast(@as(f32, metadata1_baked[k])); } } } // Create mesh. var mesh = raylib.Mesh{ .triangleCount = triangle_count, .vertexCount = triangle_count * 3, .vertices = vertices, .texcoords = texcoords, .texcoords2 = texcoords2, .normals = normals, .tangents = metadata1_packed, .vaoId = 0, .vboId = null, }; raylib.UploadMesh(@ptrCast(&mesh), false); return mesh; } };