voxel-test/src/world/chunk.zig

396 lines
20 KiB
Zig

const std = @import("std");
const raylib_helper = @import("../lib_helpers/raylib_helper.zig");
const raylib = raylib_helper.raylib;
const v3 = raylib_helper.v3;
const A7r = std.mem.Allocator;
const comptimePrint = std.fmt.comptimePrint;
const VERTICES_BLOCK_SIZE = 2 * 3 * 3;
const TEXCOORDS_BLOCK_SIZE = 2 * 2 * 3;
const X_DIRECTION = 0;
const Y_DIRECTION = 1;
const Z_DIRECTION = 2;
const RawQuad = struct {
tile: u32,
top_left: raylib.Vector3,
top_right: raylib.Vector3,
bottom_right: raylib.Vector3,
bottom_left: raylib.Vector3,
normal: raylib.Vector3,
width: f32,
height: f32,
flip_x: bool,
flip_y: bool,
top_obscuring_pattern: u32,
left_obscuring_pattern: u32,
right_obscuring_pattern: u32,
bottom_obscuring_pattern: u32,
top_left_obscured: bool,
top_right_obscured: bool,
bottom_right_obscured: bool,
bottom_left_obscured: bool,
};
// Quad shader metadata. Has to be 128 bytes in size.
const Metadata1 = packed struct {
top_left_obscured: bool,
top_right_obscured: bool,
bottom_right_obscured: bool,
bottom_left_obscured: bool,
quad_height: u6,
quad_width: u6,
unused: u16 = 0,
unused_2: u32 = 0,
unused_3: u32 = 0,
unused_4: u32 = 0,
};
comptime {
if (@bitSizeOf(Metadata1) != 128) {
@compileError(comptimePrint("Metadata 1 has wrong size. Expected 128 bytes, found {}", .{@bitSizeOf(Metadata1)}));
}
}
pub const Chunk = struct {
tiles: []u32,
a7r: A7r,
pub fn init(a7r: A7r) !Chunk {
const self = Chunk{
.a7r = a7r,
.tiles = try a7r.alloc(u32, 32 * 32 * 32),
};
@memset(self.tiles, 0);
return self;
}
pub fn deinit(self: Chunk) void {
self.a7r.free(self.tiles);
}
// Fetch the tile at (x, y, z), but with potential side effects. If you imagine tiles to be a 3-dimensional array, this would be tiles[x][y][z].
pub fn getTile(self: Chunk, x: u5, y: u5, z: u5) u32 {
return self.tiles[@as(u15, x) << 10 | @as(u15, y) << 5 | @as(u15, z)];
}
// Set the tile at (x, y, z). If you imagine tiles to be a 3-dimensional array, this would be tiles[x][y][z] = tile.
pub fn setTile(self: Chunk, x: u5, y: u5, z: u5, tile: u32) void {
self.tiles[@as(u15, x) << 10 | @as(u15, y) << 5 | @as(u15, z)] = tile;
}
// Fetch the tile at (x, y, z) without changin anything. If you imagine tiles to be a 3-dimensional array, this would be tiles[x][y][z].
fn getTileRaw(self: Chunk, x: u5, y: u5, z: u5) u32 {
return self.tiles[@as(u15, x) << 10 | @as(u15, y) << 5 | @as(u15, z)];
}
// This cyclically permutes the x, y, z coordinates at compile time. Useful when iterating over x, y, and z axis.
inline fn getTileRawShifted(self: Chunk, x: u5, y: u5, z: u5, comptime dimension: comptime_int) u32 {
if (dimension % 3 == 0) {
return self.getTileRaw(x, y, z);
} else if (dimension % 3 == 1) {
return self.getTileRaw(y, z, x);
} else if (dimension % 3 == 2) {
return self.getTileRaw(z, x, y);
}
}
// Create a raw quad with specified parameters and surface, accounting for dimension and sign. Surface is the block ID.
fn packRawQuad(
x: f32,
y_start: usize, y_end: usize,
z_start: usize, z_end: usize,
sign: comptime_int,
dimension: comptime_int,
surface: u32,
y_minus_obscuring_pattern: u32,
y_plus_obscuring_pattern: u32,
z_minus_obscuring_pattern: u32,
z_plus_obscuring_pattern: u32,
y_minus_z_minus_obscured: bool,
y_minus_z_plus_obscured: bool,
y_plus_z_plus_obscured: bool,
y_plus_z_minus_obscured: bool,
) RawQuad {
const ymin: f32 = @as(f32, @floatFromInt(y_start)) - 0.5;
const ymax: f32 = @as(f32, @floatFromInt(y_end)) - 0.5;
const zmin: f32 = @as(f32, @floatFromInt(z_start)) - 0.5;
const zmax: f32 = @as(f32, @floatFromInt(z_end)) - 0.5;
const yleft: f32 = if (sign == 1) ymin else ymax;
const yright: f32 = if (sign == 1) ymax else ymin;
const zleft: f32 = if (sign == 1) zmin else zmax;
const zright: f32 = if (sign == 1) zmax else zmin;
var raw_quad: RawQuad = undefined;
switch (dimension) {
X_DIRECTION => {
raw_quad = .{
.tile = surface,
.top_left = v3.new(x + 0.5 * sign, ymax, zright),
.top_right = v3.new(x + 0.5 * sign, ymax, zleft),
.bottom_left = v3.new(x + 0.5 * sign, ymin, zright),
.bottom_right = v3.new(x + 0.5 * sign, ymin, zleft),
.normal = v3.new(sign, 0, 0),
.width = zmax - zmin,
.height = ymax - ymin,
.flip_x = sign == -1,
.flip_y = false,
.top_obscuring_pattern = y_plus_obscuring_pattern,
.left_obscuring_pattern = z_minus_obscuring_pattern,
.right_obscuring_pattern = z_plus_obscuring_pattern,
.bottom_obscuring_pattern = y_minus_obscuring_pattern,
.top_left_obscured = y_plus_z_minus_obscured,
.top_right_obscured = y_plus_z_plus_obscured,
.bottom_right_obscured = y_minus_z_plus_obscured,
.bottom_left_obscured = y_minus_z_minus_obscured,
};
},
Y_DIRECTION => {
raw_quad = .{
.tile = surface,
.bottom_left = v3.new(yleft, zmin, x + 0.5 * sign),
.top_left = v3.new(yleft, zmax, x + 0.5 * sign),
.bottom_right = v3.new(yright, zmin, x + 0.5 * sign),
.top_right = v3.new(yright, zmax, x + 0.5 * sign),
.normal = v3.new(0, 0, sign),
.height = zmax - zmin,
.width = ymax - ymin,
.flip_x = sign == 1,
.flip_y = false,
.top_obscuring_pattern = z_plus_obscuring_pattern,
.left_obscuring_pattern = y_minus_obscuring_pattern,
.right_obscuring_pattern = y_plus_obscuring_pattern,
.bottom_obscuring_pattern = z_minus_obscuring_pattern,
.top_left_obscured = y_minus_z_plus_obscured,
.top_right_obscured = y_plus_z_plus_obscured,
.bottom_right_obscured = y_plus_z_minus_obscured,
.bottom_left_obscured = y_minus_z_minus_obscured,
};
},
Z_DIRECTION => {
raw_quad = .{
.tile = surface,
.top_left = v3.new(zleft, x + 0.5 * sign, ymin),
.top_right = v3.new(zright, x + 0.5 * sign, ymin),
.bottom_left = v3.new(zleft, x + 0.5 * sign, ymax),
.bottom_right = v3.new(zright, x + 0.5 * sign, ymax),
.normal = v3.new(0, sign, 0),
.width = zmax - zmin,
.height = ymax - ymin,
.flip_x = sign == 1,
.flip_y = true,
.top_obscuring_pattern = y_plus_obscuring_pattern,
.left_obscuring_pattern = z_minus_obscuring_pattern,
.right_obscuring_pattern = z_plus_obscuring_pattern,
.bottom_obscuring_pattern = y_minus_obscuring_pattern,
.top_left_obscured = y_plus_z_minus_obscured,
.top_right_obscured = y_plus_z_plus_obscured,
.bottom_right_obscured = y_minus_z_plus_obscured,
.bottom_left_obscured = y_minus_z_minus_obscured,
};
},
else => unreachable,
}
return raw_quad;
}
fn packMeshFromRawQuads(raw_quads: std.ArrayList(RawQuad), tile_columns: u32, tile_rows: u32) raylib.ChunkMesh {
// Create OpenGL buffers
const triangle_count: i32 = @as(i32, @intCast(raw_quads.items.len)) * 2;
const arr_size: u32 = @as(u32, @intCast(triangle_count)) * 3 * @sizeOf(f32);
const vertices: [*]f32 = @ptrCast(@alignCast(raylib.MemAlloc(arr_size * 3)));
const texcoords: [*]f32 = @ptrCast(@alignCast(raylib.MemAlloc(arr_size * 2)));
const tiletexcoords: [*]f32 = @ptrCast(@alignCast(raylib.MemAlloc(arr_size * 2)));
const normals: [*]f32 = @ptrCast(@alignCast(raylib.MemAlloc(arr_size * 3)));
const metadata1_packed: [*]u32 = @ptrCast(@alignCast(raylib.MemAlloc(arr_size * 4)));
const occlusion_sides: [*]u32 = @ptrCast(@alignCast(raylib.MemAlloc(arr_size * 4)));
for (raw_quads.items, 0..) |raw_quad, i| {
if (raw_quad.tile <= 0) continue; // air tile, no texture
const tile = raw_quad.tile;
// Set normals for the quads (same as the triangles.)
for (0..6) |j| {
normals[18 * i + 3 * j + 0] = raw_quad.normal.x;
normals[18 * i + 3 * j + 1] = raw_quad.normal.y;
normals[18 * i + 3 * j + 2] = raw_quad.normal.z;
}
// Find UV coordinates of corresponding tiles.
const left_uv = @as(f32, @floatFromInt(tile % tile_columns)) / @as(f32, @floatFromInt(tile_columns));
const right_uv = @as(f32, @floatFromInt(tile % tile_columns + 1)) / @as(f32, @floatFromInt(tile_columns));
const top_uv = @as(f32, @floatFromInt(tile / tile_columns)) / @as(f32, @floatFromInt(tile_rows));
const bottom_uv = @as(f32, @floatFromInt(tile / tile_columns + 1)) / @as(f32, @floatFromInt(tile_rows));
// Unwrap raw quads vertex coordinates and UV coordinates into OpenGL buffers.
const vertex_corners = .{ raw_quad.top_left, raw_quad.bottom_left, raw_quad.top_right, raw_quad.bottom_right, raw_quad.top_right, raw_quad.bottom_left };
const texcoords_x = .{ left_uv, left_uv, right_uv, right_uv, right_uv, left_uv };
const texcoords_y = .{ top_uv, bottom_uv } ** 3;
const tiletexcoords_x = if(raw_quad.flip_x)
.{raw_quad.width, raw_quad.width, 0.0, 0.0, 0.0, raw_quad.width} else
.{ 0.0, 0.0, raw_quad.width, raw_quad.width, raw_quad.width, 0.0 };
const tiletexcoords_y = if(raw_quad.flip_y) .{ raw_quad.height, 0.0 } ** 3 else .{ 0.0, raw_quad.height } ** 3;
inline for (0..6) |corner_id| {
vertices[VERTICES_BLOCK_SIZE * i + corner_id * 3 + 0] = vertex_corners[corner_id].x;
vertices[VERTICES_BLOCK_SIZE * i + corner_id * 3 + 1] = vertex_corners[corner_id].y;
vertices[VERTICES_BLOCK_SIZE * i + corner_id * 3 + 2] = vertex_corners[corner_id].z;
texcoords[TEXCOORDS_BLOCK_SIZE * i + corner_id * 2 + 0] = texcoords_x[corner_id];
texcoords[TEXCOORDS_BLOCK_SIZE * i + corner_id * 2 + 1] = texcoords_y[corner_id];
tiletexcoords[TEXCOORDS_BLOCK_SIZE * i + corner_id * 2 + 0] = tiletexcoords_x[corner_id];
tiletexcoords[TEXCOORDS_BLOCK_SIZE * i + corner_id * 2 + 1] = tiletexcoords_y[corner_id];
}
// Store metadata into OpenGL buffers.
for (0..6) |j| {
const metadata1 = Metadata1{
.top_left_obscured = raw_quad.top_left_obscured,
.top_right_obscured = raw_quad.top_right_obscured,
.bottom_left_obscured = raw_quad.bottom_left_obscured,
.bottom_right_obscured = raw_quad.bottom_right_obscured,
.quad_height = @intFromFloat(raw_quad.height),
.quad_width = @intFromFloat(raw_quad.width),
};
const metadata1_baked: [4]u32 = @bitCast(metadata1);
for (0..4) |k| {
metadata1_packed[24 * i + 4 * j + k] = metadata1_baked[k];
}
}
// Store ambient occlusion sides into OpenGL buffers.
for (0..6) |j| {
occlusion_sides[24 * i + 4 * j + 0] = raw_quad.left_obscuring_pattern;
occlusion_sides[24 * i + 4 * j + 1] = raw_quad.right_obscuring_pattern;
occlusion_sides[24 * i + 4 * j + 2] = raw_quad.top_obscuring_pattern;
occlusion_sides[24 * i + 4 * j + 3] = raw_quad.bottom_obscuring_pattern;
}
}
// Create mesh using the buffers.
return raylib.ChunkMesh{
.triangleCount = triangle_count,
.vertexCount = triangle_count * 3,
.vertices = vertices,
.texcoords = texcoords,
.tiletexcoords = tiletexcoords,
.normals = normals,
.metadata1 = metadata1_packed,
.occlusion_sides = occlusion_sides,
.vaoId = 0,
.vboId = null,
};
}
fn scanForRawQuads(chunk: Chunk) !std.ArrayList(RawQuad) {
var raw_quads = try std.ArrayList(RawQuad).initCapacity(chunk.a7r, 4096);
// Begin scanning the chunk for tile surfaces to make raw quads.
inline for (0..3) |dimension| { // Iterate over the 3 dimensions, X, Y and Z.
for (0..32) |raw_x| {
const x: u5 = @intCast(raw_x);
// Create surface arrays for the +x side of the layer and the -x side.
var positive_tile_surfaces: [32][32]u32 = .{.{0} ** 32} ** 32;
var negative_tile_surfaces: [32][32]u32 = .{.{0} ** 32} ** 32;
for (0..32) |raw_y| for (0..32) |raw_z| {
const y: u5 = @intCast(raw_y);
const z: u5 = @intCast(raw_z);
const tile: u32 = chunk.getTileRawShifted(x, y, z, dimension);
if (tile == 0) continue; // If air, there is no surface.
// If either at the edge of the chunk or the tile is exposed, create a tile surface.
if (x == 31 or chunk.getTileRawShifted(x + 1, y, z, dimension) == 0) positive_tile_surfaces[y][z] = tile;
if (x == 0 or chunk.getTileRawShifted(x - 1, y, z, dimension) == 0) negative_tile_surfaces[y][z] = tile;
};
inline for (.{ -1, 1 }) |sign| {
var tile_surfaces = if (sign == 1) positive_tile_surfaces else negative_tile_surfaces;
for (0..32) |y_start| for (0..32) |z_start| {
const surface = tile_surfaces[y_start][z_start]; // Starting surface tile type.
if (surface == 0) continue; // No surface if air.
tile_surfaces[y_start][z_start] = 0; // Replace this surface with air, since the corresponding quad will be created.
// The end coordinates of the quad. The quad is therefore covers rectangle from start coordinates (inclusive) to end coordinates (exclusive).
var y_end = y_start + 1;
var z_end = z_start + 1;
// todo: meshing can be optimized with SIMD stuff!!
// Greedy meshing: Extend the quad in the +y direction, until we hit a tile of a different type or the end of the chunk.
while (y_end <= 31 and tile_surfaces[y_end][z_start] == surface) : (y_end += 1) {
tile_surfaces[y_end][z_start] = 0;
}
// Greedy meshing: Extend the quad in the +z direction, until the next line does not consist of tiles of correct type.
zloop: while (z_end <= 31) : (z_end += 1) {
for (y_start..y_end) |y| if (tile_surfaces[y][z_end] != surface) break :zloop; // Stop extending if we hit a tile of incorrect type.
for (y_start..y_end) |y| tile_surfaces[y][z_end] = 0;
}
// Scan the line of tiles adjacent to the quad for ambient occlusion
var z_minus_obscuring_pattern: u32 = 0;
if (x != (if (sign == 1) 31 else 0) and z_start != 0) {
for (y_start..y_end) |raw_y| {
const y: u5 = @intCast(raw_y);
z_minus_obscuring_pattern <<= 1;
if (chunk.getTileRawShifted(if (sign == 1) x+1 else x-1, y, @intCast(z_start - 1), dimension) != 0) z_minus_obscuring_pattern |= 1;
}
}
var z_plus_obscuring_pattern: u32 = 0;
if (x != (if (sign == 1) 31 else 0) and z_end != 32) {
for (y_start..y_end) |raw_y| {
const y: u5 = @intCast(raw_y);
z_plus_obscuring_pattern <<= 1;
if (chunk.getTileRawShifted(if (sign == 1) x+1 else x-1, y, @intCast(z_end), dimension) != 0) z_plus_obscuring_pattern |= 1;
}
}
var y_minus_obscuring_pattern: u32 = 0;
if (x != (if (sign == 1) 31 else 0) and y_start != 0) {
for (z_start..z_end) |raw_z| {
const z: u5 = @intCast(raw_z);
y_minus_obscuring_pattern <<= 1;
if (chunk.getTileRawShifted(if (sign == 1) x+1 else x-1, @intCast(y_start - 1), z, dimension) != 0) y_minus_obscuring_pattern |= 1;
}
}
var y_plus_obscuring_pattern: u32 = 0;
if (x != (if (sign == 1) 31 else 0) and y_end != 32) {
for (z_start..z_end) |raw_z| {
const z: u5 = @intCast(raw_z);
y_plus_obscuring_pattern <<= 1;
if (chunk.getTileRawShifted(if (sign == 1) x+1 else x-1, @intCast(y_end), z, dimension) != 0) y_plus_obscuring_pattern |= 1;
}
}
var y_minus_z_minus_obscured = false;
var y_minus_z_plus_obscured = false;
var y_plus_z_plus_obscured = false;
var y_plus_z_minus_obscured = false;
if(x != (if (sign == 1) 31 else 0) and y_start != 0 and z_start != 0)
y_minus_z_minus_obscured = chunk.getTileRawShifted(if (sign == 1) x+1 else x-1, @intCast(y_start-1), @intCast(z_start-1), dimension) != 0;
if(x != (if (sign == 1) 31 else 0) and y_start != 0 and z_end != 32)
y_minus_z_plus_obscured = chunk.getTileRawShifted(if (sign == 1) x+1 else x-1, @intCast(y_start-1), @intCast(z_end), dimension) != 0;
if(x != (if (sign == 1) 31 else 0) and y_end != 32 and z_end != 32)
y_plus_z_plus_obscured = chunk.getTileRawShifted(if (sign == 1) x+1 else x-1, @intCast(y_end), @intCast(z_end), dimension) != 0;
if(x != (if (sign == 1) 31 else 0) and y_end != 32 and z_start != 0)
y_plus_z_minus_obscured = chunk.getTileRawShifted(if (sign == 1) x+1 else x-1, @intCast(y_end), @intCast(z_start-1), dimension) != 0;
const raw_quad = packRawQuad(@floatFromInt(raw_x), y_start, y_end, z_start, z_end, sign, dimension, surface, y_minus_obscuring_pattern, y_plus_obscuring_pattern, z_minus_obscuring_pattern, z_plus_obscuring_pattern, y_minus_z_minus_obscured, y_minus_z_plus_obscured, y_plus_z_plus_obscured, y_plus_z_minus_obscured);
try raw_quads.append(raw_quad);
};
}
}
}
return raw_quads;
}
// Create mesh of a chunk. tile_rows and tile_columns are the dimensions of the tiles.png file, in terms of individual tile textures.
pub fn createMesh(chunk: Chunk, tile_rows: u32, tile_columns: u32) !raylib.ChunkMesh {
var raw_quads = try scanForRawQuads(chunk);
defer raw_quads.deinit();
var mesh = packMeshFromRawQuads(raw_quads, tile_columns, tile_rows);
raylib.UploadChunkMesh(@ptrCast(&mesh), false);
return mesh;
}
};